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ABSTRACT
This paper proposed a novel and straightforward approach to im-
prove the accuracy of progressive multiple protein sequence align-
ment method. We trained a decision-making model based on the
convolutional neural networks and bi-directional long short term
memory networks, and progressively aligned the input protein
sequences by calculating di�erent posterior probability matrices.

To evaluate this method, we have implemented a multiple se-
quence alignment tool called DLPAlign and compared its perfor-
mance with eleven leading alignment methods on three empirical
alignment benchmarks (BAliBASE, OXBench and SABMark). Our
results show that DLPAlign can get the best total-column scores
on the three benchmarks. When evaluated against the 711 low sim-
ilarity families with average PID ≤ 30%, DLPAlign improved about
2.8% over the second-best MSA software. Besides, we compared the
performance of DLPAlign and other alignment tools on a real-life
application, namely protein secondary structure prediction on four
protein sequences related to SARS-COV-2, and DLPAlign provides
the best result in all cases.
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• Applied computing→Molecular sequence analysis.
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1 INTRODUCTION
Multiple Sequence Alignment (MSA) can be applied in many cases,
such as recovering the history or relationship between protein or
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amino acid sequences and digging out some structural or functional
roles of the sequences [34]. More and more biological modeling
methods rely on the assembly of precise MSAs [5], [57]. It is of
considerable signi�cance to construct an algorithm to assist the
MSA construction.

An MSA can be seen as a table constructed from protein se-
quences with an appropriate amount of spaces inserted [8], which
can be de�ned as a mathematical problem. Given n sequences
Si , i = 1, 2, · · · ,n as Equation (1),

S :=


S1 =

(
S11, S12, · · · , S1m1

)
S2 =

(
S21, S22, · · · , S2m2

)
...

Sn =
(
Sn1, Sn2, · · · , Snmn

) (1)

an MSA is constructed from this set of sequences by inserting an
appropriate amount of gaps needed into each of the Si sequences of
S until themodi�ed sequences, S ′i , all conform to a same length l and
no values in the sequences of S of the same column m, consists of
only gaps. The mathematical form of an MSA of the above sequence
set is shown at Equation (2):

S ′ :=



S ′1 =
(
S ′11, S

′
12, · · · , S

′
1l

)
S ′2 =

(
S ′21, S

′
22, · · · , S

′
2l

)
...

S ′n =
(
S ′n1, S

′
n2, · · · , S

′
nl

) (2)

Since the early 1980s, the MSA construction problem has been
solved by some algorithm-centric approaches [5]: Design algo-
rithms to �nd the alignment with the most massive sum of column
scores. Many excellent algorithms are well applied, such as dynamic
programming [23], divide and conquer algorithm [46] and so on.
Besides, in the past few decades, many alignment strategies have
been proposed, such as progressive strategy [13], non-progressive
strategy, consistency-based method [36], iterative re�nement [15]
etc. The progressive strategy is one of the maturest MSA strategies
with large amounts of research validation and highest accuracy
from [13]. A typical MSAmethod using progressive strategy mainly
includes �ve parts: (1) posterior probability matrix calculation [27],
(2) distance matrix calculation [4], (3)“Guide Tree" [32] generation
by clustering methods, (4) consistency transformation [37], and (5)
re�nement [53]. In past studies, the main research focus is on the
calculation method of the posterior probability matrix, the genera-
tion method of the guide tree, and the consistency transformation
method, which could be seen from the most popular MSA tools
adopting a progressive strategy in the past 10 years, shown as fol-
lows: (1) ProbCons [9] uses a pair-hidden Markov model (HMM)
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to calculate the posterior probability matrix, an unweighted proba-
bilistic consistency transformation, using an unweighted pair group
method with the arithmetic mean (UPGMA) [45] hierarchical clus-
tering method to generate a guide tree and iterative re�nement to
construct an MSA. (2) Probalign [39], another popular, highly accu-
rateMSA tool, uses a partition function instead of the ProbCons pair
HMM to calculate the posterior probability matrix. (3) MSAProbs
[24] combines (1) and (2), using the Root Mean Square (RMS) of
pair HMM and the partition function as the calculation method for
the posterior probability matrix, and adopts a weighted consistency
transformation. (4) GLProbs [55] introduced random HMM, and
adaptively uses (i) the partition function, (ii) global pair HMM, (iii)
the RMS of global pair HMM and random HMM to calculate the
posterior probability matrix using the di�erent average pairwise
percentage identity (PID) of each protein family. PID stands for the
percentage of the number of homologous positions in the pairwise
alignment of two sequences. (5) PnpProbs [56] applies UPGMA and
the weighted pair group method with arithmetical mean (WPGMA)
[44] adaptively to generate the guide tree in its progressive branch.

Although these MSA tools can achieve relatively high accuracy
on the whole, when it comes to a speci�c protein family, the accu-
racy of the di�erent tools is often di�erent [33]. Most importantly,
after so many years of research, the algorithm-centric method has
not signi�cantly improved accuracy. As for the progressive align-
ment strategy, protein families with low similarity have always
been the most challenging part [49].

This paper explores a di�erent approach which adopts classi�ers
trained from data [41], to tackle the MSA construction problem to
improve the quality of MSAs, especially the quality on low similar-
ity protein families. We �rst determined which speci�c part in the
progressive MSA methods could provide the greatest improvement
in accuracy. After that, we transformed the classi�cation of MSA
families into the classi�cation of pairwise sequences since pairwise
alignments were the smallest building blocks of MSAs [21], and
in this process, we obtained large-scale training data (there were
954854 such training data). Deep learning methods were used to
train decision-making models to select the most appropriate cal-
culation method of the speci�c part. We give more details of the
decision-making models and the implementation in Sections 2.2
and 3.2. Further, based on the most accurate decision-making model,
we build a new progressive MSA tool called DLPAlign.

We compared DLPAlign with eleven popular MSA tools on three
empirical benchmarks in Section 4. Tables 6, 7 and 8 (in Section 4)
demonstrate the alignment accuracies of the MSAs constructed by
the tools for families in BAliBASE [48], OXBench [38] and SAB-
Mark [52], respectively. Figure 3(a) compares the average TC-score
on all families from the three benchmarks between DLPAlign and
other eleven popular MSA tools. DLPAlign achieved the highest TC-
scores among all the tools on all benchmarks. Note that DLPAlign
got better performance on the low or medium similarity protein
families (extracted from OXBench, BAliBASE and SABMark bench-
marks) that other progressive methods were not good at, which
was shown at Figures 3(b) and 3(c).

We think this tool can be used in actual MSA task, so we upload
the source code as well as the benchmarks for testing to GitHub
(https://github.com/kuangmeng/DLPAlign).

2 METHODS
In this section, we �rst explain how to determine which part is used
to improve the accuracy, then consider which data to use as the
training data, and �nally introduce the decision-making process of
our deep learning methods.

2.1 How to select the best promotion part?
As we mentioned in Section 1, a typical progressive alignment
method consists of �ve main parts: (1) posterior probability matrix
calculation, (2) distance matrix calculation, (3) “Guide Tree" gen-
eration by clustering methods, (4) consistency transformation and
(5) re�nement. The most studied are Parts (1), (3) and (4) which
are chosen as candidate promotion parts. We refer to the posterior
probability matrix calculation as Part A, guide tree generation as
Part B, and consistency transformation as Part C. For each part,
we extracted several candidate options from previous studies [9],
[39], [24], [55], [56], as shown below:

Options for Part A:
(1) Pair-HMM
(2) Partition function
(3) the RMS of pair-HMM and partition function
(4) the RMS of pair-HMM, partition function and random HMM

Options for Part B:
(1) UPGMA
(2) WPGMA

Options for Part C:
(1) Unweighted consistency transformation
(2) Weighted consistency transformation
The critical concern is the upper bounds of the various calcula-

tions in di�erent parts of the progressive alignment strategy, and
in which part the maximum improvement can be made. For the i-th
option of Part A, we implemented a pipeline Pi

A by implementing
the same default methods in other parts. We used the calculation
method in each part numbered (1) as the default method for that
part. We obtained pipelines Pi

B and Pi
C in the same way. we report

the results of these pipelines in Section 3.1.

2.2 How to train decision-making models?
In Part X of the progressive alignment strategy, for a speci�c pro-
tein family, F , choosing the method with the highest accuracy on
which to construct an MSAM can be expressed as the classi�cation
problem CAln

PX
. Classi�cation CAln

PX
of a protein family is de�ned as

follows:
CAln
PX

has n classes P1
X , P

2
X ...... Pn

X . A protein fam-
ily F is in class Pi

X if the MSA constructed by the
pipeline Pi

X could get better TC-score than those con-
structed by others, where n is the number of options
in Part X and i is a positive integer not greater than n.

2.2.1 Data augmentation. In the past few years, there have been
signi�cant developments in deep learning, which have been applied
in Bioinformatics [29], [12], mainly due to the continuous expan-
sion of the data scale. Except BAliBASE, OXBench and SABMark
benchmarks, we also gained protein sequences data from SISYPHUS
[1], SABmark [52], a part of the extension set of BAliBASE namely
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BAliBASE-X, HOMSTRAD [30], and Mattbench [6] which were
used for training the classi�er.

Table 1 summarizes, for each dataset, the number of families and
the total number of sequences.

Num. of families Total num. of sequences

BAliBASE 386 11082
BAliBASE-X 147 6031

OXBench 395 3292
SABmark 423 2418
SISYPHUS 126 1772

HOMSTRAD 1030 3454
Mattbench 259 1698

Total 2766 29747
Table 1: The number of families and the total number of se-
quences in each dataset.

We considered coupling any two sequences in the same protein
family as an independent piece of data. We do this is that MSA can
be disassembled into multiple pairwise alignments. If a family has
n sequences, we can get C2

n =
n×(n−1)

2 sequence pairs from it. In
this way, our data was expanded to 954,854 pairs.

2.2.2 The structure of candidate deep learning models. Because the
length of the sequence pairs was not very consistent, we normalized
the length before choosing the neural networks. We uni�ed all pairs
into a �xed lengthα (α = 512 in our structure, we choose 512 because
there are more than 80% data shorter than 512 and 65% data shorter
than 256). When the length of a pair was insu�cient, it was �lled
by gaps at the end to increase the length to the α . When the length
of the sequence exceeded α , only the leading fragments of length
α were intercepted. When we regard each character as a single
word, if we convert it into a one-hot word vector, the size of the
vector is a little large, so we �rst used the word-embedding [20]
technique to convert each word into a small size (eight-dimensional
vector). Even so, the input scale was still relatively large, so we
applied convolutional neural networks (CNNs) [25], which had
made a signi�cant breakthrough in computer vision to reduce the
dimensionality of the data while retaining its characteristics, as
the �rst two layers of our models. There were order relationships
between every character in a protein sequence pair, so we added
a recurrent neural network (RNN) [31] layer after the CNNs. The
improved versions of the recurrent neural network, long short term
memory network (LSTM) [28] and gated recurrent unit network
(GRU) [7], and their bi-directional versions (BiLSTM, BiGRU) have
many advantages, so they were alternatives. Subsequently, two full
connection layers were connected. To reduce over�tting, we added
a speci�c dropout rate to the �rst full connection layer. This kind
of neural network structure is very suitable and widely used for
classi�cation tasks [2], [17], [22], [58], [47].

Section 3.2 gives the implementation of di�erent deep learning
models, as well as the training and testing processes. The �nal
decision-making model was determined according to the accuracy
of di�erent models.

3 IMPLEMENTATION
To test the e�ectiveness of our methods and select the best pro-
motion part, we have implemented pipelines PA, PB and PC by
adopting di�erent calculation methods in Part A, Part B and Part C
of progressive alignment strategy. In the meantime, di�erent deep
learningmodels were trained for choosing the best decision-making
model for the best promotion part.

3.1 Find the best promotion part.
To evaluate the advantages and disadvantages of several methods
in Part A and to what extent they could be improved, we got four
di�erent pipelines by using di�erent calculation methods of the
posterior probability matrix in the GLProbs’ code and implemented
the calculation in Parts B and C by default, naming them Pi

A, i =
1, 2, 3, 4, which respectively represents the di�erent options of Part
A mentioned above. We implemented Pi

B , i = 1, 2, where i denoted
the di�erent clustering methods for guide tree generation in Part
B, and Pi

C , i = 1, 2, where i denoted the di�erent calculation of
consistency transformation in Part C in the same way.

To measure the accuracies of MSAs constructed by di�erent
pipelines, the total-column score (TC-score), which was �rst intro-
duced in BAliBASE [50], is the most popular measurement in many
alignment benchmark tests. TC-score represents the percentage of
the correctly aligned columns in alignments comparing with the
references. Qscore (http://www.drive5.com/qscore) is an essential
tool for analyzing the quality of MSAs in this paper. We chose the
famous BAliBASE, OXBench, and SABmark benchmarks as the
evaluation materials.

Table 2 summarizes for each pipeline Pi
A, P

i
B or Pi

C and each
benchmark database the average TC-scores of the alignments con-
structed by the pipelines for the families in the database.

Table 2 shows that if a particular decision is used in Part A
to assist in selecting di�erent calculation methods, the theoretical
maximum promotion proportion can be obtained. So next, we chose
the right decision-making method for pipeline PA.

3.2 Determine the best decision-making model.
We implemented the neural network structures mentioned in Sec-
tion 2.2.2 and named them CNN, CNN-RNN, CNN-LSTM, CNN-
BiLSTM, CNN-GRU and CNN-BiGRU, according to the di�erent
recurrent neural network layers used.

We divided the collected pairs data into two subsets: (1) 80%
was randomly selected for model training, and (2) the remaining
20% was used for �nal testing. In the training process, a �ve-fold
cross-validation was performed. This kind of validation method
proved to be the most e�cient [19]. In the process of training, we
also set early stopping to further reduce over�tting [54].

Table 3 reveals the macro average (averaging the unweighted
mean per label) [51] of the precision, recall and f1-score of the four
labels in the 20% test data. If Pri is the precision and Ri is the
recall rate of class i , where i = 1, 2, 3 or 4 in this paper, the macro

1Upper Bound: The highest TC-score could be obtained when each family chooses the
pipeline which could get the best TC-score in this part.
2Max. Improvement: The proportion that the upper bound can improve compared
with the best-existed result of this part.

http://www.drive5.com/qscore
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BAliBASE OXBench SABMark

P1
A 62.17 80.95 39.22

P2
A 61.06 81.73 39.00

P3
A 64.42 81.57 40.11

P4
A 64.27 81.56 40.62

Upper Bound 1 66.50 82.93 42.84

Max. Improvement 2 3.23% 1.47% 5.47%

P1
B 62.17 80.95 39.22

P2
B 62.42 80.93 39.20

Upper Bound 62.74 80.96 39.28

Max. Improvement 0.51% 0.01% 0.15%

P1
C 62.17 80.95 39.22

P2
C 62.95 81.00 39.09

Upper Bound 63.65 81.21 39.69

Max. Improvement 1.11% 0.26% 1.20%

Table 2: Average TC-score of each tool on the three empirical
benchmarks

average precision (Prmacro ) and recall (Rmacro ) can be calculated
by Formula (3).

Prmacro =
1
N

∑N
i=1 Pri

R macro =
1
N

∑N
i=1 Ri

(3)

where N = 4, which means the category number is 4 in this paper.
The macro average f1-score (Fmacro ) equals to the harmonic

average of Prmacro and Rmacro . According to the f1-score in Table
3, we decided to use CNN-BiLSTM as our decision-making model.

Models Prmacro Rmacro Fmacro

CNN 87.13 86.69 86.91
CNN-RNN 86.90 88.13 87.51
CNN-LSTM 87.13 87.71 87.41

CNN-BiLSTM 87.70 88.68 88.19
CNN-GRU 87.93 86.71 87.32

CNN-BiGRU 88.23 87.89 88.06
Table 3: The macro average precision, recall and f1-score on
the test data

Table 4 illustrates, in more detail, the precision, recall and f1-
score in the four di�erent categories of the CNN-BiLSTM model
we �nally selected. Although there is a di�erence in the precision
or recall rate among the di�erent categories, the f1-scores of each
category is generally good; they were all over 85%, indicating that
our model can handle all categories well.

The structure and some details of the model we used are shown
in Figure 1.

Category Precision Recall F1-score

P1
A 82.97 96.90 89.39

P2
A 79.46 92.83 85.62

P3
A 95.44 77.81 85.73

P4
A 92.93 87.18 89.96

Macro Avg. 87.70 88.68 88.19

Table 4: The precision, recall and f1-score on the test data in
di�erent categories

4 RESULTS
Given the high accuracy of our decision-making model (CNN-
BiLSTM) on the “posterior probability matrix calculation" part,
we integrated it into the existed high-accuracy progressive align-
ment method GLProbs, to construct a new alignment tool, which
we named DLPAlign.

The “posterior probability matrix calculation" part in DLPAlign
is shown in Figure 2. Each pair x, y in F is inputed to the decision-
making model to get a label (say labelx ,y ). These labels represent
the speci�c calculation method of posterior probability matrix that
should be used. Which calculation method is chosen for the protein
family F is determined by the dominate proportion of labels that
all of its pairs get after passing through the decision-making model.
Because we already know the percentage of each correct label of
CAln
Pi
A
, where i = 1, 2, 3 or 4, the dominate proportion of predicted

labels can be calculated using Formula (4).

dominate_proportion = argmaxi

(
PLPi
TLPi

)
(4)

where PLPi means the percentage of the ith predicted label, TLPi
means the proportion of the ith true label and i = 1, 2, 3 or 4.

The proportion of the ith true label is shown as Table 5.

TLP1 TLP2 TLP3 TLP4

21.94% 16.28% 21.31% 40.47%

Table 5: The proportion of the ith true label.

Depending on the �nal family category, we use (1) the pair HMM,
(2) the partition function, (3) the RMS of pair HMM and the parti-
tion function or (4) the RMS of pair HMM, the partition function
and random HMM to accomplish the calculation of the posterior
probability matrix.

4.1 Comparing the accuracy of DLPAlign with
other MSA tools

To determine the accuracy of DLPAlign implemented by the CNN-
BiLSTM decision-making model and comparing it with other MSA
tools, three empirical benchmarks were selected - BAliBASE 3.0,
OXBench 1.3 and SABmark 1.65 - and the newest versions of eleven
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Figure 1: The neural network structure of our decision-making model. Firstly the input is transformed through the Word
embedding layer into a 512 × 8 matrix. Then the matrix passes through two CNN layers with �lter sizes of 6 and 3 respectively
(each CNN layer is followed by amax-pooling layer of size 2). Next, the output of the previous layer goes through the Bi-directional
LSTM layer with a hidden size of 64. Finally, two full connection layers are connected and a 0.5 dropout to the �rst full connection
layer is set.

popular MSA tools were chosen for comparison: QuickProbs [16],
PnpProbs, GLProbs, MSAProbs, Probalign, ProbCons, PicXAA [40],
MAFFT [18], MUSCLE [11], ClustalΩ [42] and T-Co�ee [35]. Of
these eleven MSA tools, PicXAA adopted the non-progressive strat-
egy, PnpProbs used both the non-progressive strategy and the pro-
gressive strategy, and the others used the progressive strategy. The

TC-score mentioned in Section 3.1 was the leading indicator in the
comparison.

Figure 3(a) shows the average TC-scores on all families from
BAliBASE, OXBench and SABMark of DLPAlign as well as eleven
MSA tools. DLPAlign can get about 1.55% improvement over second-
best result. Figures 3(b) and 3(c) compare the average TC-scores
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Figure 2: The process of splitting a protein family into pairs, using decision-making model to determine the label of each pair,
and �nally calculating the dominate proportion of the labels to get the label of the protein family.

on low similarity (with PID ≤ 30% and there are totally 711 such
families) and medium similarity (with 30% < PID ≤ 60% and there
are totally 352 such families) families in BAliBASE, OXBench and
SABmark. It can be seen from the �gures that the improvement of
DLPAlign is pronounced, especially in the low similarity families
set which can be improved by 2.8%.

All (386) RV11 (38) RV12 (44)

DLPAlign 65.47 47.67 87.32
QuickProbs 65.41 46.93 87.03
PnpProbs 62.46 45.15 87.25
GLProbs 62.09 44.68 87.38

MSAProbs 64.51 44.40 87.03
ProbCons 61.89 40.89 84.14
PicXAA 59.97 46.64 86.60
MAFFT 50.08 28.23 75.57
Muscle 53.17 32.06 58.90

ClustalΩ 56.20 36.22 79.38
ProbAlign 60.68 45.69 86.69
T-Co�ee 59.16 39.27 84.16

Improved % 0.09 1.58 -0.07
Table 6: Average TC-scores for BAliBASE

The alignments in BAliBASE were organized into reference sets
that were designed to represent real multiple alignment problems.
Table 6 shows the average TC-score of the whole benchmark with
386 families and the accuracy of its two divergent reference sets
(say, RV11 and RV12). DLPAlign could also handle RV11, which is a
very divergent subset, obtaining a 1.58% higher TC-score than the
second-best MSA tool.

Table 7 shows the results of DLPAlign, as well as other MSA
tools, for OXBench. In addition to the complete set of families, the

All (395) 0 - 30% (63) 30% - 100% (332)

DLPAlign 82.52 44.16 89.80
QuickProbs 81.77 41.50 88.35
PnpProbs 82.06 43.96 89.54
GLProbs 81.93 43.34 89.55

MSAProbs 81.50 42.81 89.08
ProbCons 80.68 41.50 88.35
PicXAA 81.14 39.78 89.32
MAFFT 78.15 35.93 86.40
Muscle 80.67 40.95 88.21

ClustalΩ 79.99 37.39 88.08
ProbAlign 81.68 41.06 89.39
T-Co�ee 80.18 40.04 87.80

Improved % 0.56 0.45 0.28
Table 7: Average TC-scores for OXBench

table shows the alignment accuracy for families with average PID
of less than and more than 30%.

Note that OXBench did not divide the whole database into dif-
ferent subsets. We made the division here because we thought the
two parts after separation could respectively represent divergent
families and high similarity families. It can be seen that no matter
which divergent set or high similarity set is used, DLPAlign can
always produce some improvement.

Table 8 summaries the accuracy for SABMark benchmark, which
was divided into two subset Twilight Zone and Superfamilies, de-
pending on the SCOP classi�cation [26]. These subsets together
covered the entire known fold space using sequences with very low
to low, and low to intermediate similarity, respectively. DLPAlign
improved both subsets and the whole benchmark. For Twilight
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(a) On all 1204 families of BAliBASE, OXBench and SABmark, DLPAlign gets the best
average TC-score which is 63.04 and improves about 1.55% over the second-best MSA
tool QuickProbs.

(b) Over 711 families in BAliBASE, OXBench and SABmark with PID ≤ 30%, DLPAlign
gets the best average TC-score 47.17 and improves about 2.8% over the second best one
which is 45.89.

(c) Over 352 families in BAliBASE, OXBench and SABmark with PID between 30% and
60%, DLPAlign gets the best average TC-score 81.21 and improves about 0.8% over the
second best one which is 80.60.

(d) Over 141 families in BAliBASE, OXBench and SABmark with PID > 60%, all the MSA
tools could achieve more than 96.80 on the average TC-score.

Figure 3: Comparison of average TC-scores over di�erent similarity protein families in BAliBASE, OXBench and SABmark
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All (423) Superfamily (315) Twilight Zone (108)

DLPAlign 42.59 48.37 25.71
QuickProbs 40.65 46.56 23.40
PnpProbs 41.48 47.03 24.63
GLProbs 41.22 46.95 23.86

MSAProbs 40.04 45.81 22.60
ProbCons 39.17 44.64 22.57
PicXAA 38.44 44.45 20.33
MAFFT 33.00 39.10 14.72
Muscle 33.47 39.13 16.96

ClustalΩ 35.47 41.43 18.10
ProbAlign 38.63 44.11 22.64
T-Co�ee 39.07 44.15 24.25

Improved % 2.68 2.85 4.38
Table 8: Average TC-scores for SABMark

Average running time (sec.)
BAliBASE OXBench SABMark

DLPAlign 38.10 0.84 0.40
QuickProbs 6.10 0.11 0.06
PnpProbs 13.30 0.27 0.21
GLProbs 13.63 0.23 0.15

MSAProbs 9.49 0.14 0.07
ProbCons 33.98 0.49 0.24
PicXAA 29.82 0.49 0.35
MAFFT 0.33 0.15 0.14
Muscle 1.69 0.04 0.08

ClustalΩ 0.97 0.03 0.04
ProbAlign 21.92 0.27 0.12
T-Co�ee 339.6355 6.1013 2.8393

Table 9: Average running time (in seconds) of three bench-
marks by DLPAlign and other MSA tools

Zone, except for DLPAlign, none of the MSA tools could get a TC-
score of more than 25%. In this subset, DLPAlign’s TC-score was
4.38% higher than the second-best MSA tool, PnpProbs.

4.2 Comparing the e�ciency of DLPAlign with
other MSA tools

All the tools were run on an HP desktop computer with four Intel
Cores i5-3570 (3.40 GHz) and a main memory of size 19.4 GB. Table
9 shows the e�ciency results.

It should be noted that ProbCons, Probalign, MSAProbs, GLProbs
and PnpProbs all used the standard progressive alignment steps
mentioned in Section 1, so there was not much di�erence in their
running times. The running time of DLPAlign comprised mainly
the running time of the decision-making model and the standard
progressive alignment. As Table 9 shows, the time taken by the
decision-making model was a�ected by the benchmark size (BAl-
iBASE was largest benchmark while SABMark was the smallest),
but in general, the time was acceptable.

4.3 A real-life application: Protein secondary
structure prediction

Protein secondary structure prediction is an appropriate application
of multiple sequence alignment [43].

We picked some protein sequences related to SARS-COV-2which
could be found at Protein Data Bank (PDB) [3] with these PDB ID:
6YI3, 6VYO, 6W9C and 6W61 1. We then used the following process
to evaluate the performance of DLPAlign with the other �ve highly
accurate MSA tools.

Given a protein sequence S , we use Jpred 4 [10] to
search protein sequences similar to it. Then, we con-
struct an MSA M for these sequences and S , and use
the secondary structure prediction tool provided on
Jpred 4 to predict the secondary structure of S . Finally,
comparing the predictions with reference secondary
structures o�ered by Jpred 4.

Table 10 summaries the number of wrongly aligned residues
for each MSA tool. The table shows that DLPAlign always got the
fewest wrong aligned number of the leading MSA tools.

5 CONCLUSION
The signi�cant contributions of this paper are (i) using convolu-
tional neural networks and bi-directional long short term networks
to train a decision-making model to determine which speci�c calcu-
lation method to use in the posterior probability matrix calculation
of progressive alignment approaches and (ii) releasing a new pro-
gressive multiple protein sequence alignment tool based on this
deep learning model named DLPAlign. As hindsight, DLPAlign,
based on the decision-making model, can get better accuracy on
alignment of protein families compared with existed leading MSA
methods and perform especially excellent on low similarity families.

We would also like to point out that we have not optimized
DLPAlign for e�ciency. The e�ciency of DLPAlign slows down
with the increase of the number of sequences, because the input of
the decision-making model is sequence pair. The more sequences,
the more sequence pairs will be obtained; thus, the number of times
the decision-making model runs is increased.

One way to improve e�ciency is to reduce the number of times
the decision-making model runs. In this study, we regard each se-
quence pair as a sentence to classify. If we can take the combination
of more than two sequences as the input of the decision-making
model, then the whole decision-making model will run less, which
will signi�cantly improve the e�ciency. It is also one of the im-
provements of DLPAlign in the future.

Besides, if we use the protein family simulation tool such as
INDELible [14] to obtain enough protein family data, we can also
consider the entire protein family or the temporary MSA built by
the fast MSA tool as the training data of the decision-making model,
so that the decision-making model will only run once, the e�ciency
can be further improved.

1They are all available only from April 2020, and relevant references have not been
published.
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PDB ID (Length) DLPAlign QuickProbs PnpProbs GLProbs MSAProbs PicXAA

6YI3 (140) 10 16 12 12 15 16
6VYO (128) 5 5 5 5 5 7
6W9C (317) 20 31 24 22 23 32
6W61 (299) 13 17 13 13 15 20

Table 10: Number of wrongly aligned residues in the predicted secondary structures of proteins
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