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In this thesis, we investigated the use of the data-centric approach to tackle
the Multiple Sequence Alignment (MSA) construction problems. Unlike the
algorithm-centric approach, which reduces the construction problem to a com-
binatorial optimization problem based on an abstract mathematical model,
the data-centric approach uses models trained from existing data to guide the
construction.

In our first study, we identified a simple classifier to help us choose the best
alignment tool. Then to correct the original alignment error, we added a post-
processing process, which is a region-centric realignment process. At the same
time, we performed a classifier for different families to adopt the appropriate
realignment strategy. In our second study, we delved deeper into how to add
deep-learning methods to the underlying steps of the progressive alignment
method. To improve the accuracy of the progressive alignment method, we
first determined the best promotion part and then trained a decision-making
model for that part to guide the MSA construction process.

Accordingly, we released two complete new MSA tools based on the two stud-
ies: MLProbs in the first study and DLPAlign in the second. We compared
them with about 10 other popular MSA tools against several commonly used
empirical benchmarks. The results showed that these two tools improved the
accuracy of MSA to a certain extent on all tests. Furthermore, when we tested
them on low-similarity protein families, our methods had unexpectedly good
results. MLProbs resulted in a 2.9% TC-score improvement on families with
PID ≤ 50%, while DLPAlign achieve 2.8% TC-score growth on families with
PID ≤ 30%. Moreover, these two new MSA methods can obtain good results
in real-life applications.
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Chapter 1

Introduction

1.1 Background

A Multiple Sequence Alignment (MSA) of a family of protein sequences is a
table, constructed by putting each sequence in a distinct row of the table, with
spaces appropriately inserted. The MSA construction problem is to construct
an MSA so that among the sequences in the table, homologous residues origi-
nating from a common ancestral residue are aligned in the same column of the
table

MSA construction is common in many biological analyses and post-genomic
research. Biologists sometimes need to construct MSAs for hundreds of se-
quences, each with hundreds or more residues. To help handle these daunting
and tedious tasks, there has been considerable research into automating the
construction process. Since the early 80s, the problem has been tackled us-
ing the algorithm-centric approach, in which algorithms are designed to solve
the combinatorial optimization problem, in which every possible column of
residues is associated with a column score and the objective is to find the
alignment column with the largest total. Many interesting and sophisticated
mathematical and algorithmic techniques have been applied to solve the MSA
problem (e.g., combinatorics and graph theoretic techniques [1], genetic algo-
rithms [2], simulated annealing [3], fast Fourier transform [4], the constraint
based method [5], the divide-and-conquer method [6], iterative refinement [7],
Gibbs sampling [8], consensus [9], homology extension [10] and the progressive
method [11]).

We now have useful MSA software tools that can construct good alignments
for protein families with high similarity. For those with low similarity, how-
ever, no existing tools can consistently construct satisfactory alignments, and
for them, biologists usually need some external information, such as the 3D
crystal structure of the sequences, to determine their correct alignment. It has
long been a challenge for the research community to develop new tools that
can construct better MSAs. Even small improvements can have a significant
impact because positioning even a few more critical residues correctly in the

1



Chapter 1. Introduction

alignment can save biologists a lot of time and effort by allowing them to focus
quickly on the correct regions for downstream analysis.

After decades of research, almost all the mathematical and algorithmic tech-
niques that are applicable to the MSA problem have been exhausted, and in
the past few years, no fundamentally new techniques have been proposed. To
strive for a breakthrough, we noted that the algorithm-centric approach the
MSA research community has been using so far is not suitable for tackling the
MSA problem because the problem is data-centric in nature. An MSA is basi-
cally a statement of homology, identifying various sets of residues in a protein
family so that all residues in a set are homologous and evolved from the same
ancestor residue after a long sequence of mutation events spanning thousands
or even millions of years. The algorithm-centric approach attempts to capture
these events using abstract models, from which feasible computational prob-
lems are formulated. Therefore, the models have to be simple, but then they
are not general or powerful enough. For example, one popular abstract model
is the substitution matrix model, which gives a score to each of 190 possible
pairs of the 20 amino acids, with the score given to a pair estimating the prob-
ability of the pair having the same ancestor. Obviously, these 190 scores are
far from enough to capture the long evolutionary history of tens of thousands
of protein families.

This research explores a different approach, namely the data-centric approach,
to tackle the MSA construction problem. Instead of relying on abstract mod-
els, we studied how to apply machine-learning algorithms or deep-learning
algorithms to develop models from protein family data and use them to con-
struct better MSAs.

Using the data-centric method to tackle difficult problems in computer science
is rapidly gaining popularity because of recent advances in machine learning
and deep learning, which have also been applied successfully in Bioinformatics
[12]–[16]. However, there is still no notable research on applying machine
learning or deep learning to the MSA construction problem.

1.2 Problem definition

MSA construction problem can be defined as the following mathematical prob-
lem. Given n sequences Si, i = 1,2, · · · ,n

2



1.3 Previous research

S :=



S1 = (S11,S12, · · · ,S1m1)

S2 = (S21,S22, · · · ,S2m2)
...

Sn = (Sn1,Sn2, · · · ,Snmn)

an MSA is constructed from this set of sequences by inserting an appropriate
amount of gaps needed into each of the Si sequences of S until the modified
sequences, S

′
i, all conform to a same length l and no values in the sequences of

S of the same column m, consists of only gaps. The mathematical form of an
MSA of the above sequence set is shown below:

S′ :=



S′1 =
(
S′11,S

′
12, · · · ,S′1l

)
S′2 =

(
S′21,S

′
22, · · · ,S′2l

)
...

S′n =
(
S′n1,S

′
n2, · · · ,S′nl

)
1.3 Previous research

1.3.1 Algorithm-centric approaches in MSA

The Needleman-Wunsch algorithm [17] and the Smith-Waterman algorithm
[18] are two representative sequence alignment algorithms that resulted from
dynamic programming thought in computer science. However, the time com-
plexity of the dynamic programming algorithm is O(LN), where L stands for
the length of the longest sequence in a protein family and N is the size of that
protein family, which means the two methods are very time consuming. Subse-
quently, many exciting and sophisticated mathematical and algorithmic tech-
niques were applied to solve the MSA construction problem (e.g., fast Fourier
transform, the constraint-based strategy, the divide-and-conquer strategy, iter-
ative refinement, homology extension, and the progressive and non-progressive
strategies).

The progressive alignment strategy is one of the most mature MSA strate-
gies, with considerable research validation and the highest accuracy. Progres-
sive methods usually contain five main steps: (1) posterior probability matrix
calculation, (2) distance matrix calculation, (3) “Guide Tree” generation by
clustering methods, (4) consistency transformation and (5) refinement. This

3



Chapter 1. Introduction

process has determined the direction of many studies.

CLUSTAL [19], the representative procedure for the second and third steps,
calculated the distance matrix to construct a tree structure and then progres-
sively aligned every two sequences to get the MSA. This method dramatically
speeded up the MSA construction process, so that it was feasible to run an
MSA program on a personal computer. But with the improvement in efficiency,
accuracy decreased. Instead of calculating the distance matrix, T-Coffee [20]
introduced the substitution matrix for tree construction, called “Guide Tree”.
However, it was very time consuming. Then, the fast Fourier transform (FFT)
method was adopted to count the number of exact character matches between
two sequences, which could be applied to build a data structure called an
approximate steering tree. Unlike previous studies, MUSCLE [21] used k-
mer counting for the distance computation between every two sequences and
included a post-processing module to improve the quality of the MSA, pro-
viding a balance between efficiency and accuracy. MAFFT [4] applied the
FFT method to recognize homologous regions in various sequences for special
processing. At the same time, a simplified scoring scheme was introduced in
MAFFT, which significantly reduced the running time of the program, so that
even when a large amount of data was processed, it still had good results. Part-
Tree [22] constructed the guide tree in O(N logN) time using an approximation
algorithm, where N is the size of a single protein family.

While the hidden Markov model (HMM) proved to be beneficial in calculating
posterior probabilities, ProbCons [23] adopted this in a posterior probability
matrix calculation and introduced a term called “probabilistic consistency”,
which could be employed in an MSA construction and improved its accuracy.
ProbAlign [24] introduced a method called a partition function to calculate the
posterior probabilities faster and more accurately. MSAProbs [25] combines
the two calculation methods on a posterior probability matrix, which results
in a more accurate MSA construction. GLProbs [26] calculates the sequence
similarity, adaptively deciding which posterior probability matrix calculation
method to use according to the sequence similarity (also known as percent-
age identity (PID)) as the breakthrough points. These MSA methods greatly
improved accuracy.

A more recent development, QuickProbs [27], performs MSAProbs with the
OpenCL library, significantly reducing the running time for constructing an
MSA. In QuickProbs 2 [28], accuracy was improved by changing the scoring
matrix and column-based refinement.

4



1.3 Previous research

Expresso [29] made an attempt to identify a structure for every sequence and
subsequently applied a structural aligner onto the templates associated with
every pair of sequences. PSI-Coffee [30] combined homology extension and
consistency based progressive alignment. It was designed for aligning distantly
related proteins for which no structural information was available. These two
methods are the main examples of introducing external information into the
traditional progressive alignment strategy to improve the accuracy.

PicXAA [31] greedily builds up the alignment from sequence regions with
high local similarity, thereby yielding an accurate global alignment that ef-
fectively grasps local similarity among sequences. This is the only complete
non-progressive alignment method mentioned in this thesis.

A similar non-progressive strategy was integrated into PnpProbs [32]. The non-
progressive strategy has proved to be more accurate in constructing MSAs from
divergent protein families.

With the emergence of large amounts of protein family data, the challenge
is that MSA construction methods are very complicated when encountering
extensive data. When facing the problem of super-large sequence alignment,
many MSA tools have problems such as low accuracy and long running time.
Therefore, the decomposition strategy was proposed and developed rapidly.
Inspired by the divide-and-conquer algorithm, the fundamental idea of this
method is to split large protein families into several small subsets, run MSA
tools on different subsets to get the alignment results of the subgroups, and
finally merge them to get the outcomes. SATé-I [33] uses the maximum like-
lihood estimation to resolve how to separate subsets and deals with a huge
amount of data recursively. Researchers further improved the accuracy and
time efficiency of the tool by applying different dividing strategies and differ-
ent tree construction techniques, producing a new tool, named SATé-II [34].
PASTA [35] proposed a new design in the tree construction process, which
further improved the time efficiency by binary merging. UPP [36] successfully
applied machine learning methods to the MSA task, proving that machine
learning can indeed be beneficial to MSA construction. But the accuracy of
these MSA methods on large-scale datasets is relatively low.

1.3.2 Data-centric approaches in Bioinformatics

With the coming changes in the amount and diversity of datasets, data-centric
approaches that compute on massive amounts of data (often called “Big Data”
[37], [38]) to discover patterns and to make clinically relevant predictions would
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be increasingly common in translational bioinformatics [39].

In 2005, [40] described a data-centric software architecture for bioinformatics
workflows and a rule-based workflow enactment system that used declarative
specifications of data dependencies between steps to automatically order the
execution of those steps. WebLab [41] was a data-centric knowledge-sharing
platform which was designed for biologists to fetch, analyze, manipulate and
share data under an intuitive web interface. In 2010, [42] has shown that a
proposed model for the preparation of data input can substantially improve
the utility of motif finding software. At the same year, a data-centric system
for integrating bioinformatics applications was built whose name was Evolv-
ingSpace [43] which generalized data annotations in bioinformatics field to a
set of data entities and provided a decentralized data management system for
storing and retrieving these data entities. In 2011, [44] applied trend analysis
to the EMR data from 98 patients to “learn” a data-driven guideline on how
to provide care for a 13-year-old girl with systemic lupus erythematous which
was particularly useful when derivation of a formal guideline was not feasible
from a practical standpoint. DeepNovo [14], introduced deep learning to de
novo peptide sequencing from tandem Mass Spectrometry (MS) data, the key
technology for protein characterization in proteomics research, which achieved
a major improvement of sequencing accuracy over the state-of-art methods
and subsequently enabled the complete assembly of protein sequences without
assisting databases. In 2019, [45] further extended DeepNovo on Data Inde-
pendent Acquisition (DIA) MS data and proposed DeepNovo-DIA, the first de
novo peptide sequencing algorithm for DIA MS/MS spectrums. In addition
to these listed above, there are many applications of data-centric approaches
represented by deep learning or machine learning in Bioinformatics [46], [47],
[48], [49], [50], [51], [52], [53].

1.4 Benchmarks and measurements

After decades of development, many sequences manually labeled by biologists
have been collected as different benchmarks. The effect of all MSA methods
and programs can be determined against specific indicators in these bench-
marks.

1) BAliBASE [54] is a large scale benchmark designed explicitly for multiple
sequence alignment, providing high-quality reference alignments based on
3D structural superpositions. Alignment test cases are manually refined
to ensure the correct alignment of conserved residues in this benchmark.
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We obtained a part of the extension set of BAliBASE, which we named
BAliBASE-X.

2) The OXBench [55] data set is made up of domain families obtained from
the 3Dee database [56] of protein structural domains. After filtering these
families using different criteria, we determined reference structural align-
ments with the STAMP algorithm [57]. The initial reference data set of
domain family alignments was extended and subdivided in various ways to
allow the study of different aspects of the protein sequence alignment prob-
lem. We also obtained an extension set of OXBench, named OXBench-X.

3) SABmark [58] provides sets of multiple alignment problems derived from
the SCOP [59] classification. These sets, Twilight Zone and Superfamilies,
cover the entire known fold space using sequences with very low to low, and
low to intermediate similarity, respectively

4) SISYPHUS [60] contains a collection of manually curated structural align-
ments and their inter-relationships. The alignments are constructed for
protein structural regions that range from oligomeric biological units or
individual domains to fragments of different size.

5) HOMSTRAD [61] is a database that provides combined protein sequence
and structure information extracted from the Protein Data Bank (PDB)
[62], a primary protein structure repository. HOMSTRAD relies heavily on
other databases, especially Pfam [63] and SCOP. It contains about 2,700
families, just under half of which are multi-sequence.

6) Mattbench [64] is a protein structural alignment benchmark used to test
and refine protein sequence aligners, which relies on the Matt [65] protein
structural aligner.

Table 1 summarizes for each benchmark dataset the number of families and
the total number of sequences in it.

We chose BAliBASE v3, OXBench v1.3 and SABMark v1.65, which are com-
monly adopted by most MSA tools, as evaluation benchmarks in our research.
The detailed information in these three benchmarks is shown in Table 2. The
three real empirical benchmarks are obtained from “BENCH” [66], which in-
cludes many multiple sequence alignment benchmarks in a standard FASTA
format.
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Num. of families Total num. of sequences

BAliBASE 386 11082
OXBench 395 3292
SABmark 423 2418

SISYPHUS 126 1772
HOMSTRAD 1030 3454

Mattbench 259 1698
Total 2619 23716

Table 1 The number of families and the total number of sequences in
each benchmark.

Information BAliBASE OXBench SABMark

Number of Families 386 395 423
MinimumLength of Sequences 36 42 30

Maximum Length of Sequences 7923 544 796
Average Length of Sequences 344.23 124.82 173.87

Minimum Number of Sequences 4 3 3
Maximum Number of Sequences 142 122 25

Average Number of Sequences 28.71 8.33 5.72

Table 2 The Information of three empirical benchmarks
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To measure MSA quality, the total-column score (TC-score), which was first
introduced in BAliBASE [67], is the most popular measurement in many align-
ment benchmark tests. The TC-score represents the percentage of the cor-
rectly aligned columns compared with the references. Also, the sum-of-pairs
score (SP-score), denoting the sum of all pairwise induced alignment scores,
is widely used by other MSA tools to evaluate their accuracy. These are the
main indicators compared in this thesis. Qscore [68], an MSA quality scoring
program that can obtain important indicators like the SP-score and TC-score,
was adopted in this thesis.

1.5 Main contributions

The research results listed in this thesis include two main levels:

(1) at the high level, we use classifiers to choose a better MSA tool to construct
a basic MSA, and then, based on this temporary MSA, we use another
MSA tool to realign the different regions, which is determined by another
classifier; and

(2) at the low level, we first select the most prominent part from the stan-
dard progressive alignment method, and then use deep learning to train a
decision-making model. Then, based on this decision model, we propose a
new progressive alignment tool for multiple protein sequences.

For these two different research results, we published two data-centric MSA
methods: MLProbs for the high level and DLPAlign for the low level. Next,
we explain the separate contributions of these two methods.

1.5.1 MLProbs: A Data-centric Pipeline for better Multiple Se-
quence Alignment

A critical factor for the success of a machine-learning application is whether
there is enough high-quality data to train an effective model. The training data
used in this part are the 6000+ protein families obtained from the “BENCH”
website. Since this number of families may not be enough to train deep-learning
models such as CNN and LSTM, we applied shallow machine-learning algo-
rithms like Random Forest for the training. We used the resulting models to
construct MSAs. We evaluated the alignment accuracy of our methods using
the latest versions of the golden benchmark databases SABmark, BAliBASE,
and OXBench, along with its extension set OXBench-X.
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Details of our methods and their implementation are shown in Chapter 2.

Using this method, we built a pipeline, called MLProbs, which applies our
method to construct an MSA. We compared the alignment accuracy of ML-
Probs with 10 other popular MSA tools: PnpProbs, QuickProbs, GLProbs,
PicXAA, ProbCons, MSAProbs, MAFFT, Muscle, ClustalΩ [19] and ProbAlign.
Tables8, 9, 10 and 11 in Chapter 2 show the alignment accuracy of the MSAs
constructed by the tools for families in SABMark, BAliBASE, OXBench and
OXBench-X. For all four databases, MLProbs consistently achieved the highest
TC-score of all the tools.

MLProbs performed particularly well for families with low similarity. To pro-
vide an overall picture, Figure 6 compares the TC scores of the tools of all
families in SABMark, BAliBASE, OXBench and OXBench-X with PID ≤ 50%
(1,356 such families in total). MLProbs had the highest TC-score, and its im-
provement over the second best tool was more than triple the second-best
tool’s improvement over the third best tool. As we mentioned earlier, obtain-
ing better alignments for these families with low similarity is always a challenge
for research in MSA construction, so the MLProbs improvement will have a
significant impact.

To aid verification of our results, we uploaded MLProbs, as well as copies
of SABMark, BAliBASE, OXBench and OXBench-X, to GitHub (https://
github.com/kuangmeng/MLProbs).

1.5.2 DLPAlign: A Deep Learning based Progressive Alignment for
Multiple Protein Sequences

After determining which specific part in the progressive MSA method to im-
prove, we transformed the classification of MSA families into the classification
of sequence pairs, thus obtaining large-scale training data (954,854 sequence
pairs). We took this protein-sequence data from the following datasets: SISY-
PHUS, SABmark, BAliBASE, OXBench, HOMSTRAD and Mattbench.

We used deep-learning methods to train decision models to help us choose the
most appropriate calculation method for each specific part. We provide more
details of the decision-making model and the implementation in Chapter 3.

Based on the most accurate decision-making model, we built a new progressive
MSA tool, called DLPAlign. We compared DLPAlign with the 10 other MSA
tools mentioned above on three empirical benchmarks: SABmark, BAliBASE
and OXBench. Tables 18, 19 and 20 in Chapter 3 show the alignment accuracy
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of the MSAs constructed using the tools for families in BAliBASE, OXBench
and SABMark, respectively. DLPAlign achieved the highest TC-score of all
the tools against all benchmarks.

Families with low similarity have always been the most challenging part of
MSA. DLPAlign performed better on low and medium similarity protein fam-
ilies, which the other progressive methods were not good at. Figures 16 and
17 compare the average TC-scores for low similarity families (PID ≤ 30%; 711
families in all) and medium similarity (30% < PID ≤ 60%; 352 families in all)
in BAliBASE, OXBench and SABmark. As the figures show, the improvement
in DLPAlign is pronounced, especially for low similarity families.

We think this tool can be used in actual MSA construction tasks, so we up-
loaded the source code, as well as the benchmarks for testing, to GitHub
(https://github.com/kuangmeng/DLPAlign).

1.6 Thesis organization

The rest of the thesis is organized as follows. Chapter 2 provides an overview
of MLProbs, a high-level data-centric MSA method, followed by elaboration
of its implementation and discussion of its experimental results and applica-
tions. Chapter 3 describes a novel low-level data-centric progressive alignment
method for multiple protein sequences, namely DLPAlign, from the perspec-
tive of the best promotion part selection and the best decision-making model.
Chapter 4 proposes discussions and future works related to this research.
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Chapter 2

MLProbs: A Data-centric Pipeline for better
Multiple Sequence Alignment

2.1 Overview

This part of our research explores the data-centric approach to tackling the
MSA construction problem. Instead of relying on abstract models, we studied
how to apply machine-learning algorithms to learn models from protein families
data and use them to help construct better MSAs.

This section explains how we use the machine-learning methods to help make
decisions based on existing MSA tools at a high level. There are three main
aspects to our research:

(1) how to use machine learning to help us make decisions and choose the best
decisions from existing MSA tools;

(2) how to get better column-based realignment for the MSA results we have
already obtained and using machine learning to choose the best realign-
ment strategy; and

(3) how to combine the top performers in parts 1 and 2 to obtain a new, highly
accurate pipeline, which we called MLProbs.

In the following sections, we explore how machine learning can be used to
answer the following questions:

(i) how to choose the best tools to align a family; and

(ii) whether and how much to carry out realignment of an MSA for an input
family to improve its accuracy.

We describe our methods and provide details about their implementation in
each section.
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2.2 PAln
U,V : A data-centric method for choosing better

tools

Over the past few decades, many MSA construction tools have been designed
and implemented, and they have their own strengths and weaknesses. For ex-
ample, progressive alignment tools work better in general, while non-progressive
alignment tools are more suitable for aligning divergent families. An obvious
way to improve MSA construction is as follows:

Given an input family, we first decide which MSA tool will give
the best result, and then use that tool to construct the MSA.

We propose applying machine learning to help us make the right decision. Our
study focuses on the case when there are only two tools to choose. Consider
any two MSA tools U and V. We define the following binary classification C Aln

U,V

on protein families:

C Aln
U,V has two classes 0 an 1. A protein family F is in class 1 if

the MSA constructed by V is better than that constructed by U;
otherwise, F is in 0.

We used the popular TC score to measure the goodness of an alignment. The
TC score of an alignment M is the percentage of columns in M that are
identical to the corresponding columns in the reference alignment (which is
given in the Section 1.4). We note that different implementations may have
slightly different ways to compute the TC scores (e.g., some do not consider
columns with gapped entries). In this research, we used qscore (http://www.
drive5.com/qscore) to compute all the TC scores.

The key concern is how to build an accurate model for C Aln
U,V , which can natu-

rally lead to way to outperform U and V: We use machine learning algorithm
to construct a model (or classifier) for C Aln

U,V . Then, we construct the align-
ments using the pipeline PAln

U,V , which, given an input family F , it first uses
the classifier to determine to which class in C Aln

U,V F belongs, and it uses V to
construct an alignment for F if the family belongs to the class 1; otherwise,
it uses U.

We have implemented the pipelines PAln
U,V for various tools U and V. We have

particular interest in the tool PnpProbs. To construct an MSA for input family
F , PnpProbs first computes the average PID of F , and if it is no smaller than
18%, PnpProbs calls a progressive alignment procedure P to construct the
MSA; otherwise it calls a non-progressive alignment procedure NP. We have
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Chapter 2. MLProbs

tried very hard to find other statistical conditions and algorithmic methods
for helping us make better decision on the choice of P or NP, but all our efforts
were in vain. It is interesting to find out if our data-centric method can help
us make better decision, or more precisely, whether our trained classifier C Aln

P,NP

has better precision and recall. This is indeed the case; as can be seen from
Table 3, the precision and recall of C Aln

P,NP are significantly higher than those of
the 18%-rule of PnpProbs.

Precision Recall

C Aln
P,NP 86.28 93.70

The 18%-rule 79.43 80.80

Table 3 Comparing C Aln
P,NP and PnpProbs’s 18%-rule.

Based on C Aln
P,NP, we have implemented the pipeline PAln

P,NP, and we have also im-
plemented the pipelines PAln

Pnp,Q, PAln
GL,MSA, PAln

GL,Pic, and PAln
MSA,MAF for PnpProbs(Pnp),

QuickProbs (Q), GLProbs (GL), MSAProb (MSA), PicXAA (Pic), and MAFFT
(MAF). Table 4 summarizes the accuracy of the classifiers, and Table 5 compares
the TC scores of the tools and pipelines on the four benchmark databases.

Precision Recall F1-score

C Aln
P,NP 86.28 93.70 89.84

C Aln
Pnp,Q 82.36 86.27 84.27

C Aln
GL,MSA 84.66 87.97 86.28

C Aln
GL,Pic 86.12 91.38 88.67

C Aln
MSA,MAF 84.23 86.88 85.53

Table 4 Testing results for the classifiers C Aln
U,V .

We note that the TC scores obtained by PAln
P,NP are consistently and signifi-

cantly higher than those by PnpProbs. Moreover, among all the fifteen tools
and pipelines in the table, PAln

P,NP has the highest TC scores for OXBench-X,
OXBench and SABMark. MLProbs is based on PAln

P,NP, and with additional
help from the realignment methods given in the next subsection, it achieves
the best alignment accuracy for all four databases.

C Aln
P,NP are not exceptionally good, but Table 5 shows that PAln

P,NP can still help
improve the alignment accuracy of PnpProbs. In fact, in many cases, even

14



2.3 PRal
U : A data-centric method for better realignment

though the classifier C Aln
P,NP advises a wrong tool for input family F , the TC

scores of the alignments constructed by P and NP for F are very close, and
thus the mistake does not have much effect on the alignment accuracy. It is
noteworthy that if we can choose P or NP correctly for every family, then the
average TC scores are 63.86, 60.45, 82.95, 42.70 for BAliBASE, OXBench-X,
OXBench and SABmark, respectively. Hence, there is still room for improve-
ment if we can train some better model for C Aln

P,NP.

For the other four pipelines, they all obtain higher scores for the three bench-
mark databases OXBench-X, OXBench and SABMark. However, on BAl-
iBASE our approach is not effective for the three pipelines PAln

Pnp,Q, PAln
GL,MSA

and PAln
MSA,MAF. We observe that for these three pipelines, the TC scores be-

tween the pair of tools on BALiBASE differ by at least 2.42%, for all the other
cases (i.e., for the case when the pipelines have improvement) the differences
are no more than 1.43%. In fact, it is quite clear why PAln

MSA,MAF can make no
improvement on BALiBASE. MSAProbs (with score 64.51) is dominatingly
better than MAFFT (with score 50.08) and we should choose MSAProbs for
most of the families in BAliBASE, and for the families that MAFFT is better,
its TC scores are not much higher than those of MSAProbs. Thus, mistakes
made by the classifier C Aln

MSA,MAF that chooses MAFFT instead of MSA are se-
rious enough to reduce the average TC score of the pipeline PAln

MSA,MAF to one
smaller than that of MSAProbs.

2.3 PRal
U : A data-centric method for better realignment

Realignment is often the last step of an MSA construction tool for improving
alignment accuracy. This paper focuses on the following realignment approach
proposed in [69], [70]: Given an alignment M , we identify regions in M (i.e.,
blocks of consecutive columns of M ) that are unreliable, and then realign these
regions to repair some of the misaligned parts.

Unlike sequence segmentation based refinement, such as iterative refinement or
tree-based refinement, our column-based realignment is more able to find small
local errors in the alignment process. Figure 1 shows an alignment example
of before and after performing our realignment process in the OXBench-X
database. From this figure, we could see that the realignment is very useful in
some extents.

There are many algorithmic techniques proposed for determining unreliable
regions [69]–[74], and ours is based on column scores. The score of a column
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BAliBASE OXBench-X OXBench SABMark

P 62.17 59.53 82.18 41.39
NP 60.74 57.77 82.05 41.28

PAln
P,NP 63.30 60.10 82.43 42.13

PnpProbs 62.46 59.54 82.06 41.48
QuickProbs 65.41 59.44 81.77 40.65

PAln
Pnp,Q 64.31 60.07 82.31 41.81

GLProbs 62.09 59.34 81.93 41.22
MSAProbs 64.51 59.37 81.50 40.04

PAln
GL,MSA 63.83 59.89 82.19 41.56

GLProbs 62.09 59.34 81.93 41.22
PicXAA 60.97 58.85 81.14 38.44
PAln

GL,Pic 62.81 59.66 82.34 41.67
MSAProbs 64.51 59.37 81.50 40.04

MAFFT 50.08 56.90 78.15 33.00
PAln

MSA,MAF 64.38 60.03 81.91 40.19

Table 5 TC scores obtained by the pipeline PALn
U,V .

Figure 1 The original alignment, realignment and reference alignment of
a real protein family in OXBench-X. The 8th and 9th columns
in “Original” have been corrected.
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is defined to be the average score of the amino acid pairs1 in the column
as illustrated at Figure 2, and a column is unreliable if its score is smaller
than some predetermined threshold. Unreliable regions are simply blocks of
maximal consecutive of unreliable columns. Intuitively we should realign them.
However, we observe that there are two decisions needed to be made correctly
in order to make our realignment procedure effective.

Figure 2 An example of the calculation of score of a column.

To realign or not to realign?

Our study shows that realignment is rather effective for conserved families,
and our explanation is that for such families, the reliable regions (i.e., the
regions between the unreliable ones) are often correctly aligned, and hence can
correctly “isolate” the subsequences in the unreliable regions, and none of their
residues would be aligned to any residue outside the regions. Therefore, it is
safe to focus on realigning the subsequences in an unreliable region, and by
ignoring the noises from outside, we have a better chance of getting a better
alignment.

However, the situation is different for divergent families. For such families,
the subsequences in an unreliable region are often highly dissimilar, and with-
out extra information, even biologists may not be able to construct a good
alignment. Thus, realigning these subsequences will not help, and it may even
reduce the quality of the original alignment because when constructing the

1We use the BLOSUM62 substitution matrix to determine the score of any pair of amino
acids.
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original alignment, the tool has the advantage of using information from other
parts of the family to help align this unreliable region (for example, for a pro-
gressive alignment tool, the hidden Markov model constructed based on the
whole family is likely better than that constructed based on the subsequences
in an unreliable region). Therefore, for divergent families, it may be better not
to realign their unreliable regions. In fact, our experiments show that for these
families, realigning their reliable regions occasionally improve the alignments.

Therefore, given an MSA, we need to decide whether we should realign its
reliable regions or realign their unreliable regions. To help make the decision,
we resort to machine learning again. We define the following classification C Ral

U

on all possible MSAs, where U is the alignment tool used to do the realignment:

C Ral
U has two classes 1 and 0, and an MSA M is in class 1 if it is

better to realign the reliable regions (i.e., if the MSA constructed
by realigning M ’s reliable regions has a TC score higher than the
one constructed by realigning M ’s unreliable regions); otherwise,
M is in class 0.

How wide should an unreliable region be?

Realigning an unreliable region with only one or two columns is unlikely to
improve the whole alignment. Thus, we should skip unreliable regions that
are too narrow, and only realign those with at least a minimum width (i.e., a
minimum number of columns). Our study showed that different families might
adopt different minimum widths in order to make the realignment step most
effective. To help decide the right one, we define the following classification
C mw
U , where U is the tool used to realign the unreliable regions.

Given an MSA M , let Mi denote the alignment obtained by using
U to realign all the unreliable regions with width no smaller than
i. The classification C mw

U has four classes 2, 10, 20, 30, and M is
in class i if Mi has the maximum TC score among those of M2,
M10, M20 and M30.

The classifications C mw
U and C Ral

U suggest a natural pipeline PRal
U for the re-

alignment step: Given any MSA M , we first determine the class in C Ral
U to

which M belongs . If M is in class 1, we return the new MSA obtained by
using U to realign the reliable regions of M. Otherwise, we determine the class
i in C mw

U that M belongs, and then return the alignment obtained by using U

to realign all the unreliable regions of M with width no smaller than i.
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To evaluate our realignment approach, we have implemented the pipelines
PRal

Q , PRal
GL , PRal

MSA and PRal
MAF . Our preliminary study shows that to get better

results, we need to refine our notion of reliable and unreliable regions as follows.
We say that a column of an MSA is

• reliable if its column score is greater than 2;

• it is fuzzy if its score is between 1.2 and 2;

• it is unreliable if its score is smaller than 1.2 and greater than zero, and

• it is messy if its score is negative.

We define a reliable region to be a maximal consecutive of reliable columns.
We define fuzzy region, unreliable region and confusing region similarly. Our
refinement identifies some of the regions that we do not have much confidence,
namely the messy regions (because the subsequences in these regions are so
different that we have little hope to make any improvement) and the fuzzy
regions (because it is hard to decide whether they are reliable or unreliable),
and our realignment procedure will ignore the fuzzy and the messy regions and
focus on the reliable and unreliable regions.

Table 6 summarises the results of our testing of the classifiers for the four
pipelines we have trained.

To measure the effectiveness of a realignment pipeline PRal
U , we compare the

alignment accuracy of U and that of the combination of PRal
U and U, denoted

by PRal
U ◦U, which works as follows:

Given an input family F , first uses U to construct an MSA M for
F , and then uses PRal

U to realign the reliable/unreliable regions
of M .

We have implemented the pipeline PRal
U ◦U for the tools QuickProbs (Q), GL-

Probs (GL), MSAProbs (MSA) and MAFFT(MAF). Table 6 summarises the
accuracy of the classifiers, and Table 7 summarizes the TC scores obtained
by the pipelines for BAliBASE, OXBench-X, OXBench and SABMark. We
note that the realignment step improves the scores in all cases. Furthermore,
C Ral
Q ◦Q has the highest TC scores for all four databases.
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Precision Recall F1-score

C Ral
Q 87.35 93.64 90.39

C Ral
GL 88.95 84.07 86.44

C Ral
MSA 81.27 84.65 82.93

C Ral
MAF 90.85 87.65 89.22

Table 6 Testing results for the classifiers C Ral
U

BAliBASE OXBench-X OXBench SABMark

QuickProbs 65.41 59.44 81.77 40.65
PRal

Q ◦Q 65.42 59.74 81.95 40.73
GLProbs 62.09 59.34 81.93 41.22
PRal

GL ◦GL 62.12 59.49 82.24 41.41
MSAProbs 64.51 59.37 81.50 40.04
PRal

MSA ◦MSA 64.52 59.42 81.74 40.08
MAFFT 50.08 56.90 78.15 33.00

PRal
MAF ◦MAF 50.42 56.99 78.30 33.07

Table 7 Average TC-scores of the pipelines PRal
U ◦U.
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2.4 Trainings and evaluations of the classifiers

In the previous two sections, we mentioned three classifiers. In this section,
we will integrate them to explain how to train and use them.

We use shallow machine learning algorithms to construct the classifiers, and
the challenge is to determine appropriate features for representing the inputs
so that based on them our learning algorithms can train good models without
the need of excessively large amounts of training data. To describe the features
we use, we need some definitions.

Consider any two protein sequences s1 and s2. We let ln(s1,s2) denote the
length of the optimal (pairwise) alignment M of s1 and s2, and define pid(s1,s2),
the percentage identity of s1 and s2, to be the percentage of columns of M

with identical amino acids, and sc(s1,s2), the sum of column scores of s1 and
s2, to be the total sum of scores of amino acid pairs at the same columns of
M .

Consider any protein family F . We let sz(F ) denote the total number of
sequences in F , and define av(pid(F )) and sd(pid(F )) to be the average
and the standard deviation of the pid(s1,s2)’s over all pairs of sequences s1

and s2 in F (and we will simply write av(pid) and sd(pid) if there is no risk
of confusion). Define av(sc), sd(sc), av(ln) and sd(ln) similarly.

Consider any multiple sequence alignment M . Recall that the column score of
any column C of M is defined to be the sum of the scores of all possible amino
acids pairs at C. Fix any small constant δ > 0 (in all of our experiments, we
set δ = 1). Define the peak-length ratio of M , denoted as plδ (M ) or simply
pl(M ), to be the ratio between the total number of columns of M with column
scores greater than δ and the total number of columns of M .

We use the following features for trainings the classifications C aln
U,V , C Ral

U and
C mw
U :

• C Aln
U,V : av(pid),av(sc),av(ln), pl and sz.

• C Ral
U : av(pid),av(sc),sd(sc) and pl.

• C mw
V : av(pid),sd(pid), av(ln), and sz

We use the Random Forest machine learning algorithm to train all the clas-
sifiers. The data we use are obtained from the website BENCH, which has
totally 6592 protein families. In each training, we randomly pick 70% of them
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for training, and the remaining 30% for testing. Note that BENCH contains
both DNA and protein families, and our experiments only use the protein
families. Following is a summary of the data we use.

• The total number of protein families we used is 6592, and 4214 of them
have more than two sequences.

• The total number of protein sequences is 151,340.

• The minimum, average and maximum length of the sequences are 24,
210.7 and 7923, respectively.

Some details about the Precision, Recall and F1-score of C Aln
U,V and C Ral

U have
been mentioned in the previous two sections. Here we only show the compre-
hensive performance of C mw

V on four benchmarks in Figure 3.

Figure 3 Average TC-scores on four empirical benchmarks (BAliBASE,
OXBench, OXBench-X, SABMark) with different minimum re-
alignment widths

2.5 An implementation of the pipeline PRal
Q ◦PAln

P,NP

Tables 5 and 7 show that PAln
P,NP and PRal

Q are the top performers. And the
comprehensive performance of these two pipelines on the four benchmarks can
be seen from the Figures 4 and 5, which are really good.
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Figure 4 Average TC-scores on four empirical benchmarks (BAliBASE,
OXBench, OXBench-X, SABMark) of PnpProbs, P, NP and the
pipeline PAln

P,NP

It is interesting to find out how well their combination performs. Thus, we
implement and test the pipeline PRal

Q ◦PAln
P,NP, which, given any input family

F , first uses PAln
P,NP to construct an alignment of F , and then uses PRal

Q to
improve this alignment. We call this pipeline MLProbs.

2.6 Comparing MLProbs with other MSA tools

This section compares the performance of MLProbs and ten other popular
MSA tools, including PnpProbs, QuickProbs, GLProbs, PicXAA, ProbCons,
MSAProbs, MAFFT, Muscle, ClustalΩ and ProbAlign.

2.6.1 Accuracy results

We compare the accuracy of their alignments for families in the four benchmark
databases SABMark, OXBench, OXBench-X and BaliBASE.

Table 8 shows the accuracy of the alignments constructed by the tools for all
families in SABMark, as well as those in its two subsets, the Superfamily and
the Twilight Zone subsets. Superfamily contains different SCOP superfami-
lies with PID no more than 50%, and Twilight Zone contains different SCOP
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Figure 5 Average TC-scores on four empirical benchmarks (BAliBASE,
OXBench, OXBench-X, SABMark) of using QuickProbs to re-
align unreliable regions (RUR), using QuickProbs to realign re-
liable regions (RRR) their simple combination and the pipeline
PRal

Q
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subsets with PID no more than 25%. Besides TC scores, we have also com-
pared the SP scores of the alignments, which also measure the goodness of
alignments, though are less commonly used than TC scores. For all three sets
of families no tools can obtained TC scores greater than 50; it is very difficult
to construct good MSA for them. Note that MLProbs has the best TC and
SP scores in all cases. The last row of Table 8 shows the improved percentage
of MLProbs’ scores over the second best scores. MLProbs’ improved percent-
age of the TC score is 2.65% for all the families in SABMark, and is 3.40%
for Superfamily. Even for Twilight Zone, whose families are notoriously very
difficult to align, MLProbs has an improved percentage of 1.26%.

All Superfamily Twilight Zone
TC-score SP-score TC-score SP-score TC-score SP-score

MLProbs 42.58 62.10 48.63 67.92 24.94 44.78
QuickProbs 40.65 61.05 46.56 66.86 23.40 44.11

PnpProbs 41.48 61.25 47.03 66.84 24.63 43.94
GLProbs 41.22 61.30 46.95 66.97 23.86 43.74

MSAProbs 40.04 60.24 45.81 66.00 22.60 42.46
ProbCons 39.17 59.69 44.64 65.27 22.57 42.42

PicXAA 38.44 59.06 44.45 65.18 20.33 40.23
MAFFT 33.00 53.15 39.10 60.05 14.72 32.14

Muscle 33.47 54.51 39.13 61.30 16.96 34.70
ClustalΩ 35.47 55.02 41.43 61.70 18.10 35.55

ProbAlign 38.63 59.53 44.11 65.40 22.64 42.43

Improved % 2.65% 1.38% 3.40% 1.42% 1.26% 1.52%

Table 8 Average TC-scores and SP-scores for SABMark (Chapter 2)

Table 9 shows the results for BAliBASE, as well as those for its two subsets
RV11 and RV12. RV11 contains families with PID smaller than 20% and RV12
contains those greater than 20%. Note that for RV12, seven out of the eleven
tools can already construct good alignments for its families; they all have TC
scores greater than 85. However, for RV11, the TC scores of all tools are
smaller than 50, and the 2.5% improvement of MLProbs is significant.

We now consider the benchmark database OXBench, and its extension OXBench-
X. Both databases contain the same set of 395 families, but in OXBench-X,
many new sequences have been added to the families and thus their sizes are
much larger. In fact, the average size of the families in OXBench is 8.33, while
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All RV11 RV12
TC-score SP-score TC-score SP-score TC-score SP-score

MLProbs 65.80 89.50 48.14 70.33 87.64 94.79
QuickProbs 65.41 89.41 46.93 69.59 87.03 94.52

PnpProbs 62.46 88.75 45.15 68.80 87.25 94.79
GLProbs 62.09 88.84 44.68 69.27 87.38 94.83

MSAProbs 64.51 89.09 44.40 68.18 87.03 94.63
ProbCons 61.89 88.31 40.89 65.26 84.14 92.03

PicXAA 59.97 87.84 46.64 68.98 86.60 94.61
MAFFT 50.08 82.24 28.23 52.54 75.57 88.17

Muscle 53.17 84.33 32.06 57.15 58.90 90.26
ClustalΩ 56.20 83.97 36.22 59.01 79.38 90.60

ProbAlign 60.68 87.78 45.69 69.50 86.69 94.64

Improved % 0.60% 0.1% 2.5% 1% 0.3% -0.04%

Table 9 Average TC-scores and SP-scores for BAliBASE (Chapter 2)

it is 122.49 for OXBench-X.

Table 10 shows our results for OXBench. Besides the complete set of families,
the table also shows the alignment accuracy for families with PID no less than
30%, and for those above 30%. Note from the table that all tools can construct
very good alignments for families with high similarity, but for those with PID
smaller than 30%, only MLProbs has a TC score greater than 45, and its
improved percentage over the 2nd best tool is 2.7%.

The results for OXBench-X are quite different. From Table 11 we note that
no tools can construct satisfactory alignments even for families with high sim-
ilarity. It is not surprising because the families in OXBench-X is much larger.
Even though MLProbs can still obtain the best TC scores, its improvement is
not as significant as we have seen in the other benchmarks. A reason might
be because BENCH, the dataset that we use to train MLProbs, has an aver-
age family size 34.79, which is much smaller than that of OXBench-X (whose
average family size is 122.49).

For all four databases, MLProbs consistently achieves the highest TC scores
among all tools. More importantly, MLProbs performs particularly well for
families with low similarity. To give an overall picture, Figure 6 compares the
TC scores of the tools over all families in SABMark, BAliBASE, OXBench
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All 0 - 30% 30% - 100%
TC-score SP-score TC-score SP-score TC-score SP-score

MLProbs 82.72 90.57 45.13 66.56 89.86 95.12
QuickProbs 81.77 90.17 41.50 64.50 88.35 94.46

PnpProbs 82.06 90.19 43.96 66.33 89.54 95.01
GLProbs 81.93 90.13 43.34 66.11 89.55 94.99

MSAProbs 81.50 89.83 42.81 65.22 89.08 94.78
ProbCons 80.68 89.45 41.50 64.50 88.35 94.46

PicXAA 81.14 89.61 39.78 63.16 89.32 94.93
MAFFT 78.15 88.07 35.93 60.68 86.40 93.53

Muscle 80.67 89.50 40.95 63.96 88.21 94.34
ClustalΩ 79.99 88.91 37.39 60.78 88.08 94.25

ProbAlign 81.68 89.97 41.06 63.80 89.39 94.93

Improved % 0.80% 0.42% 2.66% 0.35% 0.35% 0.12%

Table 10 Average TC-scores and SP-scores for OXBench (Chapter 2)

All 0 - 30% 30% - 100%
TC-score SP-score TC-score SP-score TC-score SP-score

MLProbs 59.80 66.14 41.68 51.11 68.49 73.34
QuickProbs 59.44 65.86 40.72 50.74 68.41 73.11

PnpProbs 59.54 65.95 40.97 50.56 68.44 73.32
GLProbs 59.34 65.81 41.00 50.53 68.14 73.14

MSAProbs 59.37 65.82 40.60 50.39 68.37 73.22
ProbCons 58.93 65.62 39.41 49.43 68.29 73.39

PicXAA 58.85 65.39 39.00 49.19 68.37 73.15
MAFFT 56.90 64.20 37.22 47.25 66.33 72.32

Muscle 56.83 64.39 36.32 47.70 66.66 72.40
ClustalΩ 58.05 64.81 39.10 48.67 67.14 72.55

ProbAlign 59.27 65.71 39.80 49.65 68.60 73.41

Improved % 0.43% 0.29% 1.66% 0.73% 0.05% -

Table 11 Average TC-scores and SP-scores for OXBench-X (Chapter 2)
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and OXBench-X with PID ≤ 50% (there are totally 1356 such families). We
note that MLProbs has the highest TC score, and its improvement over the
2nd best tool is more than triple of the 2nd best tool’s improvement over the
3rd best tool. As we have mentioned earlier, obtaining better alignments for
these families with low similarity is always a challenge for the research in MSA
construction, and MLProbs’ improvement would have a significant impact.
MLProbs also get some improvements on high similarity protein families in
average TC-score from Figure 7.

Figure 6 Over 1356 families in BAliBASE, OXBench, OXBench-X and
SABmark with PID ≤ 50%. MLProbs gets the best average
TC-score 57.54 and improves about 2.9% over the second best
one which is 55.41.

2.6.2 Efficiency results

We compare, for each of the four benchmark databases, the average running
time of MLProbs and other MSA tools for constructing an alignment. All the
tools run on a Dell desktop computer with four Intel Cores i5-6500 (3.20GHz)
and main memory of size 7.6GB. Table 12 shows the results.

Note that the running time of MLProbs is mainly composed of three parts:
the time to get an alignment using PnpProbs, the time to realign some regions
using QuickProbs, and the running times of the classifiers. The total running
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Figure 7 Over 243 families in BAliBASE, OXBench, OXBench-X and
SABmark with PID > 50%. All the MSA tools could achieve
more than 91.00 on average TC-score.

time of the classifiers are negligible (as can be corroborated by the column
for BAliBASE in Table 12, which shows the running time of MLProbs roughly
equals the sum of those of PnpProbs and QuickProbs). We note that the differ-
ences between the running time of MLProbs and the sum of that of PnpProbs
and QuickProbs are positive for OXBench and SABMark, but is negative for
OXBench-X. This is because for families in OXBench and SABMark, we usu-
ally need to realign only a few small regions, while for those in OXBench-X,
we need to realign many large regions. This is not surprising because the sizes
of the families in OXBench-X are very large, and thus those constructed by
PnpProbs are not very reliable.

2.7 Applications of MLProbs

2.7.1 Phylogenetic tree construction

A popular way to construct a phylogenetic tree for a protein family is first to
construct an MSA for the family, and then convert it to a phylogenetic tree.
As remark in [75], the quality of the constructed phylogenies depends much on
the accuracy of the MSAs. Since our experiments show that MLProbs has the
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BAliBASE OXBench OXBench-X SABMark

MLProbs 16.7325 0.8689 43.4129 0.8171
QuickProbs 5.8985 0.1053 15.9758 0.0604

PnpProbs 11.2323 0.3065 31.7131 0.2106
GLProbs 12.0890 0.2808 32.1543 0.1492

MSAProbs 8.6230 0.1404 30.7912 0.0738
ProbCons 27.2583 0.4576 96.3181 0.2263

PicXAA 23.5338 0.4050 106.6262 0.2973
MAFFT 0.3191 0.1226 0.2345 0.1056

Muscle 1.5939 0.0339 2.7322 0.0715
ClustalΩ 1.1442 0.0313 0.8776 0.0466

ProbAlign 16.1930 0.2618 73.7960 0.1112

Table 12 Average running time (in seconds) for constructing an MSA

best alignment accuracy among the tools, we expect that the phylogenetic trees
constructed from its alignments should be good. To verify this, we compare
the quality of the phylogenetic trees constructed from the MSAs obtained
by MLProbs, QuickProbs, PnpProbs, GLProbs, MSAProbs, ProbCons and
PicXAA for families in TreeFam [76]. The phylogenetic trees are constructed
as follows.

For each tool U and each family F , we construct an MSA M for
F using U. Then, we use the phylogenetic tree construction tool
MEGA X [77] to construct a phylogenetic tree from M .

We measure the quality of a phylogenetic tree by its unweighted Robinson-
Foulds (RF) distance [78] between the tree and the reference tree given in
TreeFam; the smaller the distance the better the tree. We use the package
DendroPy [79] to compute the distances. Table 13 summaries our results. We
note that for all but one family, namely TF105311, the phylogenetic trees con-
structed by MLProbs’s alignments have the smallest unweighted RF distance,
and for TF105311, MLProbs’s tree has the second smallest distance, and it
differs from the best one by only 2.

Figures 8 and 9 show the phylogenetic tree of TF105063 constructed by ML-
Probs and the reference.
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TreeFam IDMLProbsQuickProbsPnpProbsGLProbsMSAProbsProbConsPicXAA

TF105063 128 130 132 132 134 140 130
TF105073 112 112 112 112 114 116 124
TF105311 94 92 94 94 94 92 102
TF105313 18 22 18 18 22 22 18
TF105629 108 112 110 110 108 114 120
TF105801 140 140 140 140 144 150 148
TF313227 208 212 228 228 230 224 220

Table 13 The unweighted RF-distances for the phylogenetic trees con-
structed

Figure 8 The phylogenetic tree of TF105063 constructed by MLProbs.
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Figure 9 The reference phylogenetic tree of TF105063.
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2.7.2 Protein secondary structure prediction

Another common application of MSA construction is to predict the secondary
structure of proteins [80], and again the quality of the MSAs affects accuracy
of the predictions. We use MLProbs and other MSA tools to predict the sec-
ondary structure of the following protein sequences, namely 1U24 [81], 6HN6
[82], 5TFD [83], 5DFD [84], 2GDF, 3GDF [85] and 9GAF [86] as follows.

Given a protein sequence s, we use Jpred 4 [87] to search protein
sequences similar to this sequence. Then, we construct an MSA
M for these sequences and s, and then use the secondary struc-
ture prediction tool provided on Jpred 4 to predict the secondary
structure of s.

Table 14 shows the number of wrongly aligned residues made by various tools.
We note that in all cases, the numbers of MLProbs’s wrongly aligned residues
are the smallest.

PDB ID MLProbs QuickProbs PnpProbs GLProbs MSAProbs ProbCons MAFFT

1U24 1 1 1 2 2 4 5
5TFD 6 6 6 6 7 6 7
6HN6 11 12 23 22 19 13 24
5DFD 2 2 2 6 7 4 2
2GDF 50 50 52 52 50 60 53
3GDF 4 5 6 6 5 7 8
9GAF 10 12 10 14 13 14 13

Table 14 Number of wrongly aligned residues in the predicted secondary
structures (Chapter 2)

2.8 Conclusions

This research explores using the data-centric approach to improve the accuracy
of MSA construction. We have identified three classification problems that may
help improve alignment construction, and used the shadow machine learning
algorithm Random Forest to train models for them. Then, we build a pipeline
line MLProbs that make use of these models to help construct MSAs, and
empirical evaluation shows that MLProbs’ alignment accuracy is significantly
better than many popular MSA tools.
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The efficiency test shows that the running time of MLProbs is acceptable
because the running time of classifiers is negligible.

MLProbs can achieve good results in two well-known high-level real-life appli-
cations.

An interesting question is whether we can make further improvement if we
use deep learning algorithms for the trainings. We propose some research
directions related to this in the Chapter 4.
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DLPAlign: A Deep Learning based Progressive
Alignment for Multiple Protein Sequences

3.1 Overview

After using machine-learning methods to get good results in the selection of
high-level MSA tools, our next step was to examine whether machine-learning
or deep-learning algorithms could achieve better results in the specific progres-
sive alignment strategy at a low level.

A general progressive alignment includes the steps shown in Figure 10.

The most popular MSA tools adopting a progressive strategy in the past 10
years are as follows:

(1) ProbCons uses a pair-hidden Markov model (HMM) to calculate the pos-
terior probability matrix, an unweighted probabilistic consistency trans-
formation, using an unweighted pair group method with the arithmetic
mean (UPGMA) hierarchical clustering method to generate a guide tree
and iterative refinement to construct an MSA.

(2) Probalign, another popular, highly accurate MSA tool, uses a partition
function instead of the ProbCons pair HMM to calculate the posterior
probability matrix.

(3) MSAProbs combines (1) and (2), using the Root Mean Square (RMS) of
pair HMM and the partition function as the calculation method for the
posterior probability matrix, and adopts a weighted consistency transfor-
mation.

(4) GLProbs introduced random HMM, and adaptively uses the partition func-
tion, global pair HMM, the RMS of global pair HMM, and random HMM
to calculate the posterior probability matrix using the different average
pairwise percentage identity (PID) of each protein family. PID stands
for the percentage of the number of homologous positions in the pairwise
alignment of two sequences.
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Figure 10 The processes of a general progressive alignment.
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(5) PnpProbs applies UPGMA and the weighted pair group method with arith-
metical mean (WPGMA) [88] adaptively to generate the guide tree in its
progressive branch.

Although these MSA tools can achieve relatively high accuracy on the whole,
when it comes to a specific protein family, the accuracy of the different tools
is often different. Most importantly, after so many years of research, the
algorithm-centric method has not significantly improved accuracy. As for the
progressive alignment strategy, protein families with low similarity have always
been the most challenging part.

In this part of the thesis, we first determined which specific part in the pro-
gressive MSA methods could provide the greatest improvement in accuracy.
Then we used deep learning to train decision-making models to help us choose
the most appropriate calculation method for each part.

Based on the most accurate decision-making model, we built a new progressive
MSA tool, called DLPAlign. Then we compared the performance of DLPAlign
with 10 other popular MSA tools on three empirical benchmarks and a real-life
application. The findings showed that DLPAlign was the most accurate on all
tests.

3.2 Selection of promotion parts

As we mentioned in Section 3.1, a typical progressive alignment method con-
sists of the following steps: posterior probability matrix calculation, distance
matrix calculation, “Guide Tree” generation by clustering methods, consis-
tency transformation and refinement. The most studied of these steps are the
posterior probability matrix calculation, clustering methods for generating a
guide tree, and consistency transformation. We chose these three parts as
our candidate promotion parts and refer to the posterior probability matrix
calculation as Part A, guide tree generation as Part B, and consistency trans-
formation as Part C. For each part, we extracted several candidate options
from previous studies, as shown below:

Options for Part A:

1. Pair-HMM

2. Partition function

3. the RMS of pair-HMM and partition function
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4. the RMS of pair-HMM, partition function and random HMM

Options for Part B:

1. UPGMA

2. WPGMA

Options for Part C:

1. Unweighted consistency transformation

2. Weighted consistency transformation

When we test a single part, we need to use the same methods for the other
parts. We used the calculation method of each part numbered (1) as the
default method for that part. For the other parts that we did not select,
such as the distance matrix calculation and refinement, we adopted the same
implementation method as in GLProbs.

To evaluate the advantages and disadvantages of several methods in Part A
and to what extent they could be improved, we got four different pipelines
by using different calculation methods of the posterior probability matrix in
the GLProbs’ code and implemented the calculation in Parts B and C by
default, naming them P i

A, i = 1,2,3,4, which respectively represents the differ-
ent options of Part A mentioned above. We implemented P i

B, i = 1,2, where
i denoted the different clustering methods for guide tree generation in Part
B, and P i

C, i = 1,2, where i denoted the different calculation of consistency
transformation in Part C in the same way.

We used the TC-score as our judgment standard in the following comparison.
In the evaluation part, we used only the famous BAliBASE, OXBench, and
SABmark benchmarks as the evaluation materials in this section.

Table 15 summarizes for each MSA tool in P i
A, P i

B and P i
C and each bench-

mark database the average TC scores of the alignments constructed by the
MSA tool for the families in the database.

The critical concern is the upper bounds of the various calculations in different
parts of the progressive alignment strategy, and in which part the maximum

1Upper Bound: The highest TC-score could be obtained when each family chooses the
method which could get the best TC-score in this part.

2Max. Improvement: The proportion that the upper bound can improve compared with
the best-existed result of this part.
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BAliBASE OXBench SABMark

P1
A 62.17 80.95 39.22

P2
A 61.06 81.73 39.00

P3
A 64.42 81.57 40.11

P4
A 64.27 81.56 40.62

Upper Bound 1 66.50 82.93 42.84
Max. Improvement 2 3.23% 1.47% 5.47%

P1
B 62.17 80.95 39.22

P2
B 62.42 80.93 39.20

Upper Bound 62.74 80.96 39.28
Max. Improvement 0.51% 0.01% 0.15%

P1
C 62.17 80.95 39.22

P2
C 62.95 81.00 39.09

Upper Bound 63.65 81.21 39.69
Max. Improvement 1.11% 0.26% 1.20%

Table 15 Average TC-scores of each tool on the three empirical bench-
mark databases

improvement can be made. Table 15 shows that if a particular decision is used
in Part A to assist in selecting different calculation methods, the theoretical
maximum promotion proportion can be obtained. So next, we chose the right
decision-making method for pipelines PA.

3.3 Deep-learning-based decision-making method

In P i
A of the progressive alignment strategy, for a specific protein family, F ,

choosing the method with the highest accuracy on which to build MSA M can
be expressed as the classification problem C Aln

P i
A
, where i denotes the different

methods described in the above Section: 3.2.

Classification C Aln
P i

A
of a protein family is defined as follows:

C Aln
P i

A
has four classes P1

A, P2
A, P3

A and P4
A. A protein family

F is in class P i
A if the MSA constructed by P i

A could get better
TC-score than those constructed by others, where i = 1, 2, 3 or 4.
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Data augmentation

In the past few years, there have been significant developments in deep learn-
ing, which have been applied in bioinformatics [46], mainly due to the contin-
uous expansion of the data scale. It is not sufficient to use just 2,000 protein
families or 20,000 sequences to train deep-learning models, so we considered
coupling any two sequences in the same protein family as an independent piece
of data. If a family has n sequences, we can get C2

n = n×(n−1)
2 sequence pairs

from it. In this way, our data was expanded to 954,854 pairs.

The structure of candidate deep-learning models

Because the length of the sequence pairs was not very consistent, we normalized
the length before choosing the neural networks. We unified all pairs into a
fixed length α (α = 512 in our structure). When the length of a pair was
insufficient, it was filled by gaps at the end to increase the length to α . When
the length of the sequence exceeded α , only the leading fragments of length α
were intercepted.

When we regard each character as a single word, if we convert it into a one-
hot-word vector, the size of the vector is a little large, so we first used the
word-embedding [89] technique to convert each word into a small size (eight-
dimensional vector).

Even so, our input scale was still relatively large, so we applied convolutional
neural networks (CNNs), which had made a significant breakthrough in com-
puter vision to reduce the dimensionality of the data while retaining its char-
acteristics, as the first two layers of our models.

There were order relationships between every character in a protein sequence
pair, so we added a recurrent neural network (RNN) [90] layer after the CNNs.
The improved versions of the recurrent neural network, long short-term mem-
ory network (LSTM) [91] and gated recurrent unit network (GRU) [92], and
their bi-directional versions (BiLSTM, BiGRU) have many advantages, so they
were alternatives.

Subsequently, two full connection layers were connected. To reduce overfitting,
we added a specific dropout rate to the first full connection layer.

This kind of neural network structure is very suitable and widely used for
classification tasks [93], [94], [95], [96].
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Model accuracy measurement

We implemented the network structure mentioned in Section 3.3 and named it
CNN, CNN + RNN, CNN + LSTM, CNN + BiLSTM, CNN + GRU and CNN
+ BiGRU, according to the different recurrent neural network layers used.

We divided the collected pair data into two parts: (1) 80% was randomly
selected for model training, and (2) the remaining 20% was used for final
testing. In the training process, a five-fold cross-validation was performed.
This kind of cross-validation method proved to be the most efficient [97]. In
the process of training, we also set early stopping to further reduce overfitting.

Table 16 shows the macro average (averaging the unweighted mean per label)
[98] of the precision, recall and F1-score of the multi-class labels in the 20%
test data.

If Pi is the precision and Ri is the recall rate of class i, where i = 1, 2, 3 or
4 in this paper, the macro average precision (Pmacro), recall (Rmacro) can be
calculated by Formula (1).

Pmacro =
1
N ∑N

i=1 Pi

Rmacro =
1
N ∑N

i=1 Ri

(1)

where N = 4 in this paper, which means there are 4 categories.

The macro average F1-score (Fmacro) is equal to the harmonic average of Pmacro

and Rmacro.

According to the F1-score in Table 16, we decided to use CNN + BiLSTM as
our decision-making model.

Table 17 shows in more detail the precision, recall, and F1-score in the four
different categories of the CNN + BiLSTM model we finally selected.
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Models Pmacro Rmacro Fmacro

CNN 87.13 86.69 86.91
CNN + RNN 86.90 88.13 87.51

CNN + LSTM 87.13 87.71 87.41
CNN + BiLSTM 87.70 88.68 88.19

CNN + GRU 87.93 86.71 87.32
CNN + BiGRU 88.23 87.89 88.06

Table 16 The macro average precision, recall and F1-score on the test
data.

Category Precision Recall F1-score

P1
A 82.97 96.90 89.39

P2
A 79.46 92.83 85.62

P3
A 95.44 77.81 85.73

P4
A 92.93 87.18 89.96

Macro Avg. 87.70 88.68 88.19

Table 17 The precision, recall and F1-score on the test data in different
categories by CNN + BiLSTM structure.

42



3.4 Decision-making model-based progressive alignment method

Although there is a difference in the precision or recall rate among the different
categories, the F1-score of each category is generally good; they were all over
85%, indicating that our model can handle all types well.

Figure 11 further shows the confusion matrix obtained using CNN + BiLSTM
as the decision-making model to predict the four categories P i

A, where i = 1,
2, 3 or 4. The confusion matrix is a table that is often used to describe the
performance of a classifier on a set of test data for which the true values are
known.

Figure 11 The confusion matrix of the decision-making model trained
by CNN + BiLSTM. The darker the color of the grid of the
predicted label and the corresponding true label, the higher the
accuracy of the prediction of this category (category P i

A is
represented by the label i− 1). The color depth of all four
categories exceeds 0.8, indicating that the classification accu-
racy of each category is higher than 80%. This result also
corresponds to Table 17.

The structure of the model we used is shown in Figure 12.

3.4 Decision-making model-based progressive alignment
method

Given the high accuracy of our decision-making model (CNN + BiLSTM
above), we integrated it into existing progressive alignment methods to con-
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Figure 12 The neural network structure of our decision-making model.
The input can be a protein pair of any length. Firstly the input
is transformed through the Word embedding layer into a 512
× 8 matrix. Then the matrix passes through two CNN layers
with filter sizes of 6 and 3 respectively (each CNN layer is
followed by a max-pooling layer of size 2). Next, the output of
the previous layer goes through the Bi-directional LSTM layer
with a hidden size of 64. Finally, two full connection layers
are connected and a 0.5 dropout to the first full connection
layer is set. The output is a 4×1 matrix that represents the
final category.
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struct a new progressive alignment for multiple protein sequences, which we
named DLPAlign. Given a protein family F , DLPAlign produces a multiple
sequence alignment using mainly the following steps..

Decision-making of the posterior probability matrix calculation

Each pair x, y in F is inseted into the model with the highest accuracy de-
scribed in the previous section to get a label (say, labelx,y). These labels rep-
resent the specific calculation method of the posterior probability matrix that
should be used. Which calculation method is chosen for the protein family
F is determined by the dominant proportion of labels that all of its pairs get
after passing through the decision-making model.

Because we already know the percentage of each correct label of C Aln
P i

A
, where

i = 1, 2, 3 or 4, the dominate proportion of predicted labels can be calculated
using the following Formula (2).

dominate_proportion = argmaxi( PLPi
T LPi

)

(2)

where PLPi means the percentage of the ith predicted label, T LPi means the
proportion of the ith true label and i = 1, 2, 3 or 4.

This process is shown in Figure 13.

Depending on the final family category, we use (1) pair HMM, (2) the partition
function, (3) the RMS of pair HMM and the partition function, or (4) the
RMS of pair HMM, the partition function, and random HMM to accomplish
the calculation of the posterior probability matrix.

Distance matrix and guide tree generation

By finding the maximum summing path (or maximum weight trace) through
the posterior probability matrix, a pairwise alignment is computed on every
pair x, y in F and the maximum sum is saved as Prob(x, y). The distance
between sequences x and y can be measured by Formula (3).
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Figure 13 The process of splitting a protein family into pairs and using
decision-making model to determine the label of each pair,
and finally calculating the mode to get the family label

Distance[x][y] = 1 - Prob(x,y)
min(x.Length,y.Length)

(3)

where x.Length, y.Length represent the length of sequences x, y respectively.

A guide tree is a data structure used to determine the relationship between
(1) sequence and sequence, (2) sequence and profile, and (3) profile and pro-
file. We define two clusters, A and B. The distance between their union and
another cluster, C, can be expressed as Formula (4), which is also the specific
implementation of UPGMA.

Distance[A ∪ B][C] = |A|×Distance[A][C]+|B|×Distance[A][C]
|A|+|B|

(4)

where |A| , |B| and |C| represent the weight of clusters A, B and C.
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According to this distance calculation formula and the distance matrix com-
puted, we can start from the sequences of the minimum distance and gradually
build a binary tree, named “Guide Tree”.

Figure 14 shows an example of a guide tree calculated using DLPAlign.

Figure 14 The guide tree of family “BB11018” in BAliBASE calculated
by DLPAlign.

Consistency transformation

In this step, we use other sequences to relax the posterior probability matrix of
every pair x and y (written as Px,y), which we calculated in step 3.4 to determine
the substitution scores for the following steps. The relaxation process can be
expressed by Formula (5).

P′
x,y = 1

|S| (2 × Px,y + ∑z∈SPx,z ×Pz,y )

(5)

where S stands for the sequences set in protein family F , and P′
x,y is the new

transformed posterior matrix of pair < x,y >.
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Progressive alignment

Based on the Guide Tree we determined in the Step 3.4 and the relaxed poste-
rior probability matrix in Step 3.4, we can merge two child nodes (sequences)
from the deepest node to get a profile, and then merge them to the root node
of the respective tree to get a complete MSA containing all sequences in F .

Figure 15 shows an example of an order of progressive alignment in DLPAlign.

Figure 15 The order of progressive alignment in DLPAlign of family
“BB11018” in BAliBASE.

Refinement

The purpose of refinement is to correct some errors that may have occurred
in the alignment between previous sequences. In this specific implementation,
we also used the iterative refinement step to divide all aligned sequences into
two groups each time randomly and then used the profile-profile alignment to
realign them again. However, we added accuracy judgment. Each refinement
was valid only if the maximum sum described in Section 3.4 was larger than
before.

3.5 Comparing DLPAlign with other MSA tools

3.5.1 Accuracy results

To determine the accuracy of DLPAlign implemented by the CNN + BiLSTM
decision-making model and comparing this with other MSA tools with high
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accuracy, three empirical benchmarks were selected –BAliBASE 3.0, OXBench
1.3 and SABmark 1.65 –and the newest versions of 10 popular MSA tools
were chosen for comparison: QuickProbs, PnpProbs, GLProbs, MSAProbs,
Probalign, ProbCons, PicXAA, MAFFT, MUSCLE and ClustalΩ. Of these
10 MSA tools, PicXAA adopted the non-progressive strategy, PnpProbs used
both the non-progressive and progressive strategy, and the others used the
progressive strategy. The TC-score and SP-score mentioned in Section 1.4
were the leading indicators in the comparison.

All (386) RV11 (38) RV12 (44)
TC SP TC SP TC SP

DLPAlign 65.47 89.57 47.67 69.97 87.32 94.79
MLProbs 65.80 89.50 48.14 70.33 87.64 94.79

QuickProbs 65.41 89.41 46.93 69.59 87.03 94.52
PnpProbs 62.46 88.75 45.15 68.80 87.25 94.79
GLProbs 62.09 88.84 44.68 69.27 87.38 94.83

MSAProbs 64.51 89.09 44.40 68.18 87.03 94.63
ProbCons 61.89 88.31 40.89 65.26 84.14 92.03

PicXAA 59.97 87.84 46.64 68.98 86.60 94.61
MAFFT 50.08 82.24 28.23 52.54 75.57 88.17

Muscle 53.17 84.33 32.06 57.15 58.90 90.26
ClustalΩ 56.20 83.97 36.22 59.01 79.38 90.60

ProbAlign 60.68 87.78 45.69 69.50 86.69 94.64

Table 18 Average TC-scores and SP-scores for BAliBASE (Chapter 3)

The alignments in BAliBASE were organized into reference sets that were
designed to represent real multiple alignment problems. Table 18 shows the
average TC-score of the whole benchmark with 386 families and the accuracy
of its two divergent reference sets (say, RV11 and RV12). DLPAlign could
also handle RV11, which is a very divergent subset, obtaining a 1.58% higher
TC-score than the third-best MSA tool.

Table 19 shows the results of DLPAlign, as well as other MSA tools, for
OXBench. In addition to the complete set of families, the table shows the
alignment accuracy for families with average PID of less than and more than
30%. Note that OXBench did not divide the whole database into different
subsets. We made the division here because we thought the two parts after
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All (395) 0 - 30% (63) 30% - 100% (332)
TC SP TC SP TC SP

DLPAlign 82.52 90.42 44.16 65.59 89.80 95.13
MLProbs 82.72 90.57 45.13 66.56 89.86 95.12

QuickProbs 81.77 90.17 41.50 64.50 88.35 94.46
PnpProbs 82.06 90.19 43.96 66.33 89.54 95.01
GLProbs 81.93 90.13 43.34 66.11 89.55 94.99

MSAProbs 81.50 89.83 42.81 65.22 89.08 94.78
ProbCons 80.68 89.45 41.50 64.50 88.35 94.46

PicXAA 81.14 89.61 39.78 63.16 89.32 94.93
MAFFT 78.15 88.07 35.93 60.68 86.40 93.53

Muscle 80.67 89.50 40.95 63.96 88.21 94.34
ClustalΩ 79.99 88.91 37.39 60.78 88.08 94.25

ProbAlign 81.68 89.97 41.06 63.80 89.39 94.93

Table 19 Average TC-scores and SP-scores for OXBench (Chapter 3)

separation could respectively represent divergent families and high similarity
families.

It can be seen that no matter which divergent set or high similarity set is used,
DLPAlign can always produce some improvement, although the improvements
are sometimes small.

Table 20 summarizes the accuracy of the SABMark benchmark, which was
divided into two subset Twilight Zone and Superfamilies, depending on the
SCOP classification. These subsets together covered the entire known fold
space using sequences with very low to low, and low to intermediate similarity,
respectively. DLPAlign improved both subsets and the whole benchmark. For
Twilight Zone, except for DLPAlign, none of the MSA tools could get a TC-
score of more than 25%. In this subset, DLPAlign’s TC-score was 4.38% higher
than the third-best MSA tool, PnpProbs. The results were very surprising.

Families with low similarity are always the most challenging part of the MSA
task. It is worth noting that DLPAlign gets better performance on the low or
medium similarity protein families, which other progressive methods are not
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All (423) Superfamily (315) Twilight Zone (108)
TC SP TC SP TC SP

DLPAlign 42.59 61.82 48.37 67.76 25.71 44.51
MLProbs 42.58 62.10 48.63 67.92 24.94 44.78

QuickProbs 40.65 61.05 46.56 66.86 23.40 44.11
PnpProbs 41.48 61.25 47.03 66.84 24.63 43.94
GLProbs 41.22 61.30 46.95 66.97 23.86 43.74

MSAProbs 40.04 60.24 45.81 66.00 22.60 42.46
ProbCons 39.17 59.69 44.64 65.27 22.57 42.42

PicXAA 38.44 59.06 44.45 65.18 20.33 40.23
MAFFT 33.00 53.15 39.10 60.05 14.72 32.14

Muscle 33.47 54.51 39.13 61.30 16.96 34.70
ClustalΩ 35.47 55.02 41.43 61.70 18.10 35.55

ProbAlign 38.63 59.53 44.11 65.40 22.64 42.43

Table 20 Average TC-scores and SP-scores for SABMark (Chapter 3)

Figure 16 Over 711 families in BAliBASE, OXBench and SABmark with
PID ≤ 30%. DLPAlign gets the best average TC-score 47.17
and improves about 2.8% over the second best one which is
45.89.
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Figure 17 Over 352 families in BAliBASE, OXBench and SABmark with
PID between 30% and 60%. DLPAlign gets the best average
TC-score 81.21 and improves about 0.8% over the second best
one which is 80.60.

Figure 18 Over 141 families in BAliBASE, OXBench and SABmark with
PID > 60%. All the MSA tools could achieve more than 96.80
on average TC-score.
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Average running time (sec.)
BAliBASE OXBench SABMark

DLPAlign 38.10 0.84 0.40
QuickProbs 6.10 0.11 0.06

PnpProbs 13.30 0.27 0.21
GLProbs 13.63 0.23 0.15

MSAProbs 9.49 0.14 0.07
ProbCons 33.98 0.49 0.24

PicXAA 29.82 0.49 0.35
MAFFT 0.33 0.15 0.14

Muscle 1.69 0.04 0.08
ClustalΩ 0.97 0.03 0.04

ProbAlign 21.92 0.27 0.12

Table 21 Average running time (in seconds) of three benchmarks by DL-
PAlign and other MSA tools

good at. Figures 16 and 17 compare the average TC-scores on low similarity
families (with PID ≤ 30%, 711 such families in all) and medium similarity
(with 30% < PID ≤ 60%, 352 such families in all) in BAliBASE, OXBench
and SABmark. It can be seen from the figures that the improvement with
DLPAlign was pronounced, especially in the low-similarity families set. Also,
every MSA tool got a high TC-score for high-similarity protein families, as
shown in Figure 18.

3.5.2 Efficiency results

All the tools were run on an HP desktop computer with four Intel Cores i5-3570
(3.40 GHz) and a main memory of size 19.4 GB. Table 21 shows the efficiency
results.

It should be noted that ProbCons, Probalign, MSAProbs, GLProbs and PnpProbs
all used the standard progressive alignment steps mentioned in Section 3.1, so
there was not much difference in their running times. The running time of
DLPAlign comprised mainly the running time of the decision-making model
and the standard progressive alignment. As Table 21 shows, the time taken
by the decision-making model was affected by the benchmark size (BAliBASE
was largest benchmark while SABMark was the smallest), but in general, the
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time was acceptable.

3.6 Applications of DLPAlign

3.6.1 Protein secondary structure prediction

Protein secondary structure prediction is an appropriate application of multiple
sequence alignment [80].

We picked some protein sequences related to COVID-19, which could be found
at PDB with these PDB ID: 6YI3, 6VYO, 6W9C, and 6W61 1. We then used
the following process to evaluate the performance of DLPAlign with the other
five highly accurate MSA tools

Given a protein sequence S, we use Jpred 4 [87] to search protein
sequences similar to this sequence. Then, we construct an MSA
M for these sequences and S, and then use the secondary struc-
ture prediction tool provided on Jpred 4 to predict the secondary
structure of S. Finally, comparing the predictions with reference
secondary structures offered by Jpred 4.

Table 22 summarizes the number of wrongly aligned residues for each MSA
tool. The table shows that DLPAlign always got the fewest wrong aligned
residues of the leading MSA tools.

Figures 19 and 20 are two examples that show the predicted protein secondary
structures by DLPAlign, QuickProbs, PnpProbs, GLProbs, MSAProbs and
PicXAA on proteins with PDB ID 6W61 and 6YI3.

PDB ID DLPAlign QuickProbs PnpProbs GLProbs MSAProbs PicXAA

6YI3 10 16 12 12 15 16
6VYO 5 5 5 5 5 7
6W9C 20 31 24 22 23 32
6W61 13 17 13 13 15 20

Table 22 Number of wrongly aligned residues in the predicted secondary
structures of proteins (Chapter 3)

1They are all available only from April this year, and relevant references have not been
published.
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Figure 19 The predicted protein secondary structures by DLPAlign,
QuickProbs, PnpProbs, GLProbs, MSAProbs and PicXAA
on protein with PDB ID 6W61.
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Figure 20 The predicted protein secondary structures by DLPAlign,
QuickProbs, PnpProbs, GLProbs, MSAProbs and PicXAA
on protein with PDB ID 6YI3.

3.7 Conclusions

The significant contribution of this paper is to use a deep-learning method as a
decision-making model to determine which specific calculation method to use
in the posterior probability matrix part of progressive alignment approaches
and release a new progressive multiple protein sequence alignment tool based
on this deep learning model. Our study showed that DLPAlign produced the
most accurate decision-making model.

We did not optimize DLPAlign for efficiency, so in Chapter 4, we propose some
research directions related to efficiency improvement in DLPAlign.

Though the current results of DLPAlign are not better than our previous re-
search MLProbs, it is caused by a lack of training data, and since we keep
accumulating data, the approach will keep improving.
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Discussion and Future works

In the Chapters 2 and 3, we explained how machine learning and deep learning
can be applied to help construct better MSAs. In this chapter, we discuss the
weaknesses in the previous two MSA methods and set the direction for future
improvement.

4.1 Discussion

The research on the two data-centric MSA methods listed in this thesis shows
that machine-learning and deep-learning methods can be used to improve the
accuracy of existing MSA tools, which is also an extension of the application
of machine learning and deep learning in bioinformatics.

Although the machine-learning and deep-learning methods applied in our re-
search achieved relatively high accuracy, improvement is still possible. ML-
Probs just chose to use some shallow machine-learning algorithms. If enough
data could be used for training some deep-learning models for it, the accuracy
can be improved further. Besides, If we choose better features or better model
training methods, it may further improve the accuracy of the models (not only
in MLProbs, but also in DLPAlign) and even the accuracy of the final MSA.
Another problem is efficiency, which is related mainly to DLPAlign. As can
be seen from Table 21, the running time is significantly increased in DLPAlign
because of multiple uses of the decision-making model.

Since our data-centric MSA methods have achieve good results on the align-
ment of small-scale protein families, the next step is to find out whether these
data-centric methods can also be applied to large protein families.

In response to the two weaknesses and the next step, we propose some possible
improvements in the next section.

4.2 Future works

Since two different MSA methods were investigated in this thesis, we propose
future works from two perspectives.
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4.2.1 Future works inspired by MLProbs

CNN, which has achieved great success in computer vision, is very suitable
for training models like PAln

U,V , which was mentioned in Chapter 2 for MSA
construction.

An MSA is very similar to a 2D picture; they both have hierarchal structures.
For example, an MSA has conserved columns, which form conserved regions,
while a picture has points, which form lines, which in turn, form boxes. So
determining whether an MSA should be aligned by U or V is similar to determin-
ing whether a picture is a dog or a cat. One major difficulty is that the input
of our MSA problem is a protein family, not an MSA. One possible solution is
that first, a quick MSA tool is used to construct an imperfect MSA, and then
CNN is used to classify this imperfect MSA. CNN is known to be very good at
recognizing imperfect pictures, allowing titling, and tolerating translation and
other distortions and noises, so it will perform well at recognizing imperfect
MSAs.

Instead of an MSA being treated as a computer vision problem, it may be
treated as a natural language processing problem, with advanced tools, like
LSTM and BERT [99], applied to help train the models.

For example, for a protein family, we can determine whether we should use
U or V to align it as follows: for each pair of sequences in the family, we
construct the optimal alignment of this pair, and then determine to which
class it belongs. Then, we pick the class to which the majority of the pairs
of sequences belong as the class of the family. The problem of determining to
which class a pairwise alignment belongs can be treated as an NLP sentiment
analysis problem; each column in the alignment is regarded as a word, the
words comprise a sentence, and we need to determine the ”emotion” (i.e., U or
V) expressed by the sentence.

4.2.2 Future works inspired by DLPAlign

The efficiency of DLPAlign is reduced as the number of sequences increases,
because the input of the decision model is sequence pairs. The more sequences,
the more sequence pairs will be obtained, thus increasing the number of times
the decision model runs.

One way to improve the efficiency is to reduce the number of times the decision
model runs. In this study, we regard each sequence pair as a sentence to
classify. If we take the combination of more than two sequences as the input

58



4.2 Future works

of the decision model, then the whole decision model will run less, which
will significantly improve the efficiency of DLPAlign. This is one area for
improvement in DLPAlign in the future.

Also, if we use a protein family simulation tool such as INDELible [100] to
obtain enough protein family data, we can also consider the entire protein
family, or the temporary MSA built by the fast MSA tool, as a training set
of the decision model, so the decision model will run only once, thus further
improving the efficiency.

Another direction related to DLPAlign is choosing better models for the protein
sequence classification. In natural language processing field, except CNN and
LSTM, BERT [99] is a very new and popular model for text classification or
emotion classification problem. Since our protein sequence pair classification
is similar to the classification tasks in natural language processing field, we can
also consider using BERT to train the decision-making model in DLPAlign.

4.2.3 Future works on large-scale protein families

In Section 1.3.1, we described the general steps in constructing MSAs on large-
scale protein families:

(1) divide massive data into different subsets according to specific rules;

(2) use MSA tools that achieve state-of-art effects on small-scale datasets to
align each subgroup; and

(3) combine the MSAs of subsets to obtain the final MSA.

We can perform our MLProbs or DLPAlign in step (2) to get the MSAs on
small datasets. For step (1), the difficulty is how to find a suitable method
to divide the entire protein family into multiple subsets, while ensuring that
the similarity within the group is high and the similarity between groups is
low. We can divide the entire protein family into cluster [101] problems, which
are more common in machine learning and deep learning. There are many
high-accuracy models available for this.
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