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Abstract—In this paper, we explore using the data-centric approach to tackle the Multiple Sequence Alignment (MSA) construction

problem. Unlike the algorithm-centric approach, which reduces the construction problem to a combinatorial optimization problem based

on an abstract mathematical model, the data-centric approach explores using classification models trained from existing benchmark

data to guide the construction. We identified two simple classifications to help us choose a better alignment tool and determine whether

and how much to carry out realignment. We show that shallow machine-learning algorithms suffice to train sensitive models for these

classifications. Based on these models, we implemented a new multiple sequence alignment pipeline, called MLProbs. Compared with

10 other popular alignment tools over four benchmark databases (namely, BAliBASE, OXBench, OXBench-X and SABMark), MLProbs

consistently gives the highest TC score. More importantly, MLProbs shows non-trivial improvement for protein families with low

similarity; in particular, when evaluated against the 1,356 protein families with similarity � 50%, MLProbs achieves a TC score of 56.93,

while the next best three tools are in the range of [55.41, 55.91] (increased by more than 1.8%). We also compared the performance of

MLProbs and other MSA tools in two real-life applications – Phylogenetic Tree Construction Analysis and Protein Secondary Structure

Prediction – and MLProbs also had the best performance. In our study, we used only shallow machine-learning algorithms to train our

models. It would be interesting to study whether deep-learning methods can help make further improvements, so we suggest some

possible research directions in the conclusion section.

Index Terms—Multiple sequence alignment, protein family, machine learning, classification
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1 INTRODUCTION

A multiple Sequence Alignment (MSA) of a family of
protein sequences is a table constructed by putting

each sequence into a distinct row of a table with spaces
appropriately inserted. The MSA construction problem
involves constructing an MSA so that among the sequences
in the table, homologous residues that originated from a
common ancestral residue are aligned in the same column
of the table.

MSA construction is common in a lot of biological analy-
ses and post-genomic research. Biologists sometimes need
to construct MSA for hundreds of sequences, each with
hundreds or more residues. To help handle these daunting
and tedious tasks, a lot of research effort has been devoted
to automating the construction process. Since the early 80s,
the problem has been tackled using the algorithm-centric
approach: algorithms are designed to solve a combinatorial
optimization problem, in which every possible column of
residues is associated with a column score, and the objective
is to find the alignment with the largest sum of column
scores. Many interesting and sophisticated mathematical

and algorithmic techniques have been applied to solve the
MSA problem (e.g., combinatorics and graph theoretic tech-
niques [1], genetic algorithms [2], simulated annealing [3],
fast Fourier transform [4], the constraint-based method [5],
[6], the divide-and-conquer method [7], iterative refinement
[8], Gibbs sampling [9], consensus [10], and the progressive
method [11]).

We now have reliable MSA software tools that can con-
struct good alignments for protein families with high simi-
larity. However, for those with low similarity, no existing
tools can consistently construct satisfactory alignments, so
for them, biologists usually need some external information,
such as the 3D crystal structure of the sequences, to deter-
mine their correct alignments. It has always been a chal-
lenge for the research community to develop new tools that
can construct better MSAs for them. Even a small improve-
ment can have a significant impact because correct position-
ing for even a few more key residues in the alignment can
save biologists considerable time and effort by shifting their
attention quickly to the correct regions for downstream
analysis.

It seems that after decades of research, we have exhaus-
ted almost all the mathematical and algorithmic techniques
that are applicable to the MSA problem, and in the last few
years, no fundamentally new technique has been proposed.
In striving for a breakthrough, we noted that the algorithm-
centric approach was not suitable to tackle the MSA prob-
lem because the problem is data-centric in nature. An MSA
is basically a statement of homologue, identifying various
sets of residues in a protein family so that all residues in a
set are homologous and evolved from the same ancestor res-
idue after a long sequence of mutation events spanning
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thousands or even millions of years. The algorithm-centric
approach attempts to capture these events with abstract
models, from which it formulates feasible computational
problems. Therefore, the models have to be simple, but then
they are not general or powerful enough. For example, one
popular abstract model is the substitution matrix model,
which gives a score to each of the 190 possible pairs of the
20 amino acids, and the score given to a pair estimates the
prior probability that the pair has the same ancestor. Obvi-
ously, these 190 scores are far from enough to capture the
long evolutionary history of tens of thousands of protein
families.

This paper explores a different approach, namely the
data-centric approach, to tackle the MSA construction prob-
lem. Instead of relying on abstract models, we study how to
apply machine-learning algorithms to learn models from
protein family data and use them to help construct better
MSAs. Using data-centric methods to tackle difficult prob-
lems in computer science is rapidly gaining popularity
because of recent advances in machine learning. Machine
learning has also been applied in bioinformatics, and we
have witnessed many successes [12], [13], [14], [15], [16].

There is still no notable research on applying machine
learning to the MSA construction problem, though some
works have explored using existing data and knowledge to
improve alignment accuracy. For example, the knowledge-
base multiple sequence alignment technique uses existing
knowledge databases, such as SWISSPROT, GENBANK or
HOMSTRAD, to constructmore reliable sequence alignments
[17], [18]. Homology extension is another strategy, which
uses database searches to collect homologous sequences to
gain evolutionary information for improving alignment accu-
racy [19], [20].

1.1 Our Contributions

The critical factor for the success of a machine-learning
application is whether there are enough high-quality data
to train effective models. The training data used in this
paper are the 6000+ protein families obtained from the
BENCH website (https://www.drive5.com/bench) [21].
Since this number of families may not be enough for train-
ing deep machine-learning models, such as CNN or LSTM,
we applied shallow machine learning algorithms, like Ran-
dom Forest and SVM, for the training and used the resulting
models to help construct MSAs. We evaluated the align-
ment accuracy of our methods using the latest versions
of the golden benchmark databases: SABmark v1.65 [22],
BAliBASE v3 [23], and OXBench v1.3 and its extension
OXBench-X [24].

We provide details of our methods and their implemen-
tation in Section 2 and Section 3, respectively. Using our
methods, we built a pipeline, called MLProbs, which
applies our methods to help construct MSAs. We compared
the alignment accuracy of MLProbs and 10 other popular
MSA tools: (1) PnpProbs[25], (2) QuickProbs [26], (3)
GLProbs [27], (4) PicXAA [28], (5) ProbCons [29], (6) MSAP-
robs [30], (7) MAFFT [4], (8) Muscle [31], (9) ClustalV [32],
and (10) ProbAlign [33]. Tables 6, 7, 8 and 9 (in Section 4)
show the alignment accuracy of the MSAs constructed
using the tools for families in SABMark, BAliBASE,

OXBench and OXBench-X, respectively. In all four data-
bases, MLProbs achieved the highest TC score of all the
tools. More importantly, MLProbs performed particularly
well for families with low similarity. To provide an overall
picture, Fig. 1a compares the TC scores of the tools for all
families in SABMark, BAliBASE, OXBench and OXBench-X
with PID � 50% (there are 1,356 such families in total).
MLProbs had the highest TC score, and its improvement

Fig. 1. Comparison of the TC scores over families in SABMark,
BAliBASE, OXBench and OXBench-X.
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over the second-best tool was more than double that of the
second-best tool’s improvement over the third-best tool. As
we mentioned above, obtaining better alignments for fami-
lies with low similarity is always a challenge for research in
MSA construction, so MLProbs’ improvement should have
a significant impact.

To verify of our results, we uploaded MLProbs, as well
as copies of SABMark, BAliBASE, OXBench and OXBench-
X to GitHub (http://github.com/kuangmeng/MLProbs).

The rest of the paper is organized as follows. In Section 2,
we describe our methods, and in Section 3, we provide
details of their implementation. In Section 4, we describe
the implementation of MLProbs and compare its perfor-
mance with 10 other popular MSA tools. We also applied
MLProbs to two real-life applications, namely a phyloge-
netic tree construction and protein secondary structure pre-
diction, and evaluated its effectiveness. Finally, in Section 5,
we provide a conclusion and propose future research
directions.

2 METHODS

In this section, we explore how to use machine learning to
help answer the following two questions: (i) how to choose
better tools to align a family, and (ii) given an MSA for the
input family, whether and how much to carry out realign-
ment to improve its accuracy. We describe our methods in
this section and provide details of their implementation in
the following section.

2.1 How to Choose Better Tools

Over the past few decades, many MSA construction tools
have been designed and implemented, and each has its own
strengths and weaknesses. For example, progressive align-
ment tools work better in general, but non-progressive
alignment tools are more suitable for aligning divergent
families. An obvious way to improve MSA construction is
as follows: Given an input family, we first decide which
MSA tool will give the best result and then use that tool to
construct the MSA. For example, the web-based MSA ser-
vice SeqAna [34] allows users submit a small alignment
sample as a reference for SeqAna to automatically identify
the best tool to align their large set of sequences. In this
paper, we propose applying machine learning to help make
the right decision.

Our study focuses on a case in which there are only two
tools to choose from. Consider any two MSA tools: U and V.
We define the following binary classification CAlnU;V for protein
families:

CAlnU;V has two classes 0 an 1. A protein family F is in class
1 if the MSA constructed by V is better than that con-
structed by U; otherwise, F is in 0.

We use the popular TC score [35] to measure the suitabil-
ity of an alignment. The TC score of the alignment M is the
percentage of columns in M that are identical to the corre-
sponding columns in the reference alignment (which is
given in the benchmark databases). We note that different
implementations may have slightly different ways of com-
puting the TC scores (e.g., some do not consider columns

with gapped entries). In this paper, we use qscore (http://
www.drive5.com/qscore) to compute all the TC scores.

The key concern is how to build an accurate model for
CAlnU;V , which can naturally outperform U and V. We use a
machine-learning algorithm to construct a model (or classi-
fier) for CAlnU;V . Then we construct the alignments using the
pipeline PAln

U;V , which, given an input family F , first uses the
classifier to determine to which class in CAlnU;V F belongs, and
it uses V to construct an alignment for F if the family
belongs to the class 1; otherwise, it uses U. We implemented
PAln

U;V for various MSA tools U and V and evaluated their per-
formance. We report our results in Section 3.

2.2 How to Get a Better Realignment

Realignment is often the last step of an MSA construction
tool for improving alignment accuracy. This paper focuses
on the following realignment approach proposed in [36],
[37]: Given an alignment M, we identify regions in M (i.e.,
blocks of consecutive columns ofM) that are unreliable and
then realign these regions to repair some of the misaligned
parts. Many algorithmic techniques have been proposed for
determining unreliable regions [36], [37], [38], [39], [40],
[41]. Ours is based on column scores. The score of a column is
defined to be the average score of the amino acid pairs1 in
the column; a column is unreliable if its score is smaller
than a predetermined threshold. Unreliable regions are sim-
ply blocks of maximal consecutive of unreliable columns.
Intuitively, we should realign them. However, we observed
that there are two decisions that need to be made correctly
to make our realignment procedure effective.

2.2.1 To Realign or Not to Realign?

Our study shows that realignment is rather effective for con-
served families. Our explanation is that for such families,
the reliable regions (i.e., regions between unreliable ones)
are often correctly aligned, so they can correctly isolate the
sub-sequences in the unreliable regions, and none of their
residues will be aligned to any residue outside the regions.
Therefore, it is safe to focus on realigning the sub-sequences
in an unreliable region, and by ignoring noise from outside,
we have a better chance of getting a better alignment.

However, the situation is different for divergent families.
For such families, the sub-sequences in an unreliable region
are often highly dissimilar, so without extra information,
even biologists may not be able to construct a good align-
ment. Thus, realigning these sub-sequences will not help; it
may even reduce the quality of the original alignment
because when constructing the original alignment, the tool
has the advantage of using information from other parts of
the family to help align this unreliable region (for example,
for a progressive alignment tool, the hidden Markov model
constructed based on the whole family is likely better than
that constructed based on the sub-sequences in an unreli-
able region). Therefore, for divergent families, it may be bet-
ter not to realign their unreliable regions. In fact, our
experiments show that for these families, realigning their
reliable regions occasionally improves the alignments.

1. We use the BLOSUM62 substitution matrix to determine the score
of any pair of amino acids.
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Therefore, given an MSA, we need to decide whether we
should realign its reliable regions or realign the unreliable
regions. To help make the decision, we resort to machine
learning again. We define the following classification CRalU

on all possible MSAs, where U is the tool used for the
realignment:

CRalU has two classes 1 and 0, and an MSAM is in class 1
if it is better to realign the reliable regions (i.e., if the
MSA constructed by realigning M’s reliable regions has
a TC score higher than the one constructed by realigning
M’s unreliable regions); otherwise,M is in class 0.

2.2.2 How Wide Should an Unreliable Region be?

Realigning an unreliable region with only one or two col-
umns is unlikely to improve the whole alignment. Therefore,
we should skip unreliable regions that are too narrow, and
realign only those with at least a minimumwidth (i.e., a min-
imum number of columns). Our study showed that different
families might adopt different minimum widths in order to
make the realignment step most effective. To help determine
the best one, we define the following classification CmwU , where
U is the tool used to realign the unreliable regions.

Given an MSA M, letMi denote the alignment obtained
by using U to realign all the unreliable regions with width
no smaller than i. The classification CmwU has four classes
2; 10; 20; 30, and M is in class i if Mi has the maximum
TC score.

The classifications CmwU and CRalU suggest a natural pipeline
PRal

U for the realignment step. Given any MSA M, we first
determine the class in CRalU to which M belongs. If M is in
class 1, we return the new MSA obtained by using U to
realign the reliable regions of M. Otherwise, we determine
the class i in CmwU to which M belongs, and then return the
alignment obtained using U to realign all the unreliable
regions ofMwith a width no smaller than i.

2.3 Training of the Classifiers

We use shallow machine-learning algorithms to construct
the classifiers. The challenge is to determine the appropriate
features to represent the inputs so that based on them, our
learning algorithms can train good models without exces-
sively large amounts of training data. To describe the fea-
tures we use, we need some definitions.

Consider any two protein sequences s1 and s2. We let
lnðs1; s2Þ denote the length of the optimal (pairwise) align-
ment M of s1 and s2, and define pidðs1; s2Þ, the percentage
identity of s1 and s2, to be the percentage of columns of M
with identical amino acids, and scðs1; s2Þ, the sum of the col-
umn scores of s1 and s2, to be the total sum of the scores of
the amino acid pairs in the same columns ofM.

Consider any protein family F . We let szðFÞ denote the
total number of sequences in F , and define avðpidðFÞÞ and
sdðpidðFÞÞ to be the average and the standard deviation of
the pidðs1; s2Þ’s overall pairs of sequences s1 and s2 inF (and
we simply write avðpidÞ and sdðpidÞ if there is no risk of con-
fusion). Define avðscÞ, sdðscÞ, avðlnÞ and sdðlnÞ similarly.

Consider any multiple sequence alignment M. Recall
that the column score of any column C ofM is defined to be
the sum of the scores of all possible amino acids pairs at C.

Fix any small constant d > 0 (in all of our experiments, we
set d ¼ 1:0). Define the peak-length ratio of M, denoted as
pldðMÞ or simply plðMÞ to be the ratio between the total
number of columns of M with column scores greater than d

and the total number of columns ofM.
We use the following features to train the classifications:

CalnU;V , CRalU and CmwU :

� CAlnU;V : avðpidÞ; avðscÞ; avðlnÞ, pl and sz.

� CRalU : avðpidÞ; avðscÞ; sdðscÞ and pl.

� CmwV : avðpidÞ; sdðpidÞ, avðlnÞ, and sz

We use the Random Forest algorithm in the Python
machine learning library scikit-learn [42] to train the classi-
fiers, with all the parameters set to default in all our training
(e.g., the number of trees in the forest is 100, the minimum
number of samples required to be a leaf node is 1, etc.). The
data we use are obtained from the BENCHwebsite (https://
www.drive5.com/bench), which has a total of 6,592 protein
families. For the training, we use five-fold cross-validation to
avoid overfitting.2 Note that BENCH contains both DNA
and protein families; our experiments use only the protein
families. Following is a summary of the data we use.

� We used 6,592 protein families, 4214 of which have
more than two sequences.

� There were 151,340 protein sequences in total.
� The minimum, average and maximum length of the

sequences were 24, 210.7 and 7,923, respectively.
We provide details of the training and testing of the clas-

sifiers, as well as the implementation of the pipelines, in the
next section.

3 IMPLEMENTATION

To test the effectiveness of our methods, we implemented
PAln

U;V and PRal
U for various MSA tools and tested how much

improvement they made. We also tried to find the best PAln
U;V

and PRal
U for implementing MLProbs.

3.1 Finding the Best PAln
U;V

We implemented the pipelines PAln
U;V for various tools U and

V. We had particular interest in the tool PnpProbs. To con-
struct an MSA for input family F , PnpProbs first computes
the average PID of F ; if it is no smaller than 18%, PnpProbs
calls a progressive alignment procedure P to construct the
MSA; otherwise it calls a non-progressive alignment proce-
dure NP. We tried very hard to find other statistical condi-
tions and algorithmic methods to help us make a better
decision about the choice of P or NP, but all our efforts were
in vain. We thought it would be interesting to find out
whether our data-centric method could help us make better
decisions, or more precisely, whether our trained classifier
CAlnP;NP had better precision and sensitivity. This was indeed
the case. As can be seen from Table 1, the precision and sen-
sitivity of CAlnP;NP are significantly higher than those of the
18%-rule of PnpProbs.

Based on CAlnP;NP, we implemented the pipeline PAln
P;NP, and

we also implemented the pipelines PAln
Pnp;Q, PAln

GL;MSA, PAln
GL;Pic,

2. In our evaluation of MLProbs, the TC and SP scores are obtained
by averaging results from five cross-validation runs.
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and PAln
MSA;MAF for PnpProbs(Pnp), QuickProbs (Q), GLProbs

(GL), MSAProb (MSA), PicXAA (Pic), and MAFFT (MAF).
Table 2 summarizes the accuracy of the classifiers, and
Table 3 compares the TC scores of the tools and pipelines
for the four benchmark databases.

The TC scores obtained byPAln
P;NP were consistently and sig-

nificantly higher than those obtained by PnpProbs. More-
over, among the 15 tools and pipelines in the table, PAln

P;NP had
the highest TC scores for OXBench-X, OXBench and SAB-
Mark. MLProbs is based on PAln

P;NP, and with additional help
from the realignment methods given in the next subsection,
it achieved the best alignment accuracy for all four databases.

3.2 Finding the Best PRal
T

To evaluate our realignment approach, we implemented the
pipelines PRal

Q , PRal
GL , PRal

MSA and PRal
MAF. Our preliminary study

showed that to get better results, we needed to refine our
notion of reliable and unreliable regions as follows. We say
that a column of an MSA is:

� reliable if its column score is greater than 2;

� it is fuzzy if its score is between 1.2 and 2;
� it is unreliable if its score is smaller than 1.2 and

greater than zero, and
� it is messy if its score is negative.
We define a reliable region as a maximal consecutive of

reliable columns. We define a fuzzy region, an unreliable
region and a confusing region similarly. Our refinement
identifies some of the regions in which we do not have
much confidence, namely messy regions (because the sub-
sequences in these regions are so different that we have little
hope of making any improvement) and the fuzzy regions
(because it is hard to decide whether they are reliable or
not). Our realignment procedure ignores the fuzzy and the
messy regions, focusing instead on the reliable and unreli-
able regions.

To measure the effectiveness of a realignment pipeline
PRal

U , we compare the alignment accuracy of U and that of
the combination of PRal

U and U, denoted by PRal
U � U, which

works as follows:

Given an input family F , first uses U to construct an
MSAM for F , and then uses PRal

U to realign the reliable/
unreliable regions ofM.

We implemented the pipeline PRal
U � U for the tools Quick-

Probs (Q), GLProbs (GL), MSAProbs (MSA) and MAFFT(MAF).
Table 4 summarizes the accuracy of the classifiers, andTable 5
summarizes the TC scores obtained by the pipelines for BAli-
BASE, OXBench-X, OXBench and SABMark. The realignment
step improved the scores in all cases. Furthermore, CRalQ � Q
had the highest TC scores for all four databases.

4 EXPERIMENTS AND EVALUATION OF MLPROBS

Tables 3 and 5 show that PAln
P;NP and PRal

Q were the top per-
formers. We thought it would be interesting to find out how
well their combination performed, so, we implemented and

TABLE 1
Comparing CAlnP;NP and PnpProbs’s 18%-Rule

Precision Sensitivity

CAlnP;NP 86.41 92.78
The 18%-rule 79.43 80.80

TABLE 2
Testing Results for the Classifiers CAlnU;V

Precision Sensitivity F-index

CAlnP;NP 86.41 92.78 89.48

CAlnPnp;Q 81.89 88.74 85.18

CAlnGL;MSA 80.89 91.36 85.81

CAlnGL;Pic 86.09 91.22 88.58

CAlnMSA;MAF 80.27 91.45 85.49

TABLE 3
TC Scores Obtained by the Pipeline PALn

U;V

BAliBASE OXBench-X OXBench SABMark

P 62.17 59.53 82.18 41.39
NP 60.74 57.77 82.05 41.28
PAln

P;NP 63.22 59.57 82.33 42.11

PnpProbs 62.46 59.54 82.06 41.48
QuickProbs 65.41 59.44 81.77 40.65
PAln

Pnp;Q 64.86 59.93 82.26 41.69

GLProbs 62.09 59.34 81.93 41.22
MSAProbs 64.51 59.37 81.50 40.04
PAln

GL;MSA 64.07 59.69 82.16 41.82

GLProbs 62.09 59.34 81.93 41.22
PicXAA 60.97 58.85 81.14 38.44
PAln

GL;Pic 62.74 59.68 82.24 41.99

MSAProbs 64.51 59.37 81.50 40.04
MAFFT 50.08 56.90 78.15 33.00
PAln

MSA;MAF 64.44 59.95 81.70 40.13

TABLE 4
Testing of CRalU

Precision Sensitivity F-index

CRalQ 88.21 91.71 89.93

CRalGL 87.50 81.31 84.29

CRalMSA 84.79 89.92 87.28

CRalMAF 91.82 83.91 87.69

TABLE 5
TC-Scores of the Pipelines PRal

U � U

BAliBASE OXBench-X OXBench SABMark

QuickProbs 65.41 59.44 81.77 40.65
PRal

Q � Q 65.50 59.74 81.89 40.73

GLProbs 62.09 59.34 81.93 41.22
PRal

GL � GL 62.12 59.49 82.24 41.41

MSAProbs 64.51 59.37 81.50 40.04
PRal

MSA � MSA 64.32 59.39 81.74 40.34

MAFFT 50.08 56.90 78.15 33.00
PRal

MAF � MAF 50.22 56.76 78.22 32.83
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tested the pipeline PRal
Q � PAln

P;NP, which, given any input fam-
ily F , first uses PAln

P;NP to construct an alignment of F , and
then uses PRal

Q to improve this alignment. We call this pipe-
line MLProbs.

4.1 Comparing MLProbs With Other MSA Tools

This section compares the performance of MLProbs and 10
other popular MSA tools: (1) PnpProbs, (2) QuickProbs, (3)
GLProbs, (4) PicXAA, (5) ProbCons, (6) MSAProbs, (7)
MAFFT, (8) Muscle, (9) ClustalV and (10) ProbAlign. We
compare the accuracy of their alignments for families in the
four benchmark databases SABMark, OXBench, OXBench-X
and BaliBASE.

Table 6 shows the accuracy of the alignments constructed
by the tools for all families in SABMark, as well as those in its
two subsets, the Superfamily and the Twilight Zone subsets.
Superfamily contains different SCOP superfamilies with PID
of no more than 50%, and Twilight Zone contains different
SCOP subsets with PID of no more than 25%. In addition to
TC scores, we compared the SP scores of the alignments,
which also measure the quality of alignments, though they
are less commonly used than TC scores. For all three sets of
families, no tools can obtained TC scores greater than 50%,
so it is very difficult to construct good MSAs for them. Note

that MLProbs had the best TC and SC scores in all cases. The
last row of Table 6 shows the improved percentage of
MLProbs’ scores over the second best scores.

Table 7 shows the results for BAliBASE, as well as those
for its two subsets RV11 and RV12. RV11 contains families
with PID smaller than 20%, and RV12 contains those greater
than 20%. Note that for RV12, seven out of the 11 tools can
construct good alignments for its families; they all have TC
scores greater than 85%. However, for RV11, the TC scores
for all tools are smaller than 50%, and the 2.5% improve-
ment of MLProbs is significant.

We now consider the benchmark database OXBench and
its extension OXBench-X. Both databases contain the same
set of 395 families, but in OXBench-X, many new sequences
have been added to the families, so their sizes are much
larger. In fact, the average size of the families in OXBench is
8.33, while it is 122.49 for OXBench-X.

Table 8 shows our results for OXBench. Besides the com-
plete set of families, the table shows the alignment accuracy
for families with PID of no less than 30% and for those
above 30%. Note in the table that all tools can construct very
good alignments for families with high similarity, but for
those with PID smaller than 30%, only MLProbs has a TC
score greater than 45%, and its improved percentage over
the second-best tool is nearly 2.7%.

TABLE 6
TC-Scores and SP-Scores on SABMark

All Superfamily Twilight Zone

TC-score SP-score TC-score SP-score TC-score SP-score

MLProbs 42.07 61.75 47.96 67.61 24.89 44.64
QuickProbs 40.65 61.05 46.56 66.86 23.40 44.11
PnpProbs 41.48 61.25 47.03 66.84 24.63 43.94
GLProbs 41.22 61.30 46.95 66.97 23.86 43.74
MSAProbs 40.04 60.24 45.81 66.00 22.60 42.46
ProbCons 39.17 59.69 44.64 65.27 22.57 42.42
PicXAA 38.44 59.06 44.45 65.18 20.33 40.23
MAFFT 33.00 53.15 39.10 60.05 14.72 32.14
Muscle 33.47 54.51 39.13 61.30 16.96 34.70
ClustalV 35.47 55.02 41.43 61.70 18.10 35.55
ProbAlign 38.63 59.53 44.11 65.40 22.64 42.43

Improved % 1.42% 0.82% 2.00% 0.96% 1.06% 1.20%

TABLE 7
TC-Scores and SP-Scores for BAliBASE

All RV11 RV12

TC-score SP-score TC-score SP-score TC-score SP-score

MLProbs 65.84 89.52 48.14 70.33 87.60 94.68
QuickProbs 65.41 89.41 46.93 69.59 87.03 94.52
PnpProbs 62.46 88.75 45.15 68.80 87.25 94.79
GLProbs 62.09 88.84 44.68 69.27 87.38 94.83
MSAProbs 64.51 89.09 44.40 68.18 87.03 94.63
ProbCons 61.89 88.31 40.89 65.26 84.14 92.03
PicXAA 59.97 87.84 46.64 68.98 86.60 94.61
MAFFT 50.08 82.24 28.23 52.54 75.57 88.17
Muscle 53.17 84.33 32.06 57.15 58.90 90.26
ClustalV 56.20 83.97 36.22 59.01 79.38 90.60
ProbAlign 60.68 87.78 45.69 69.50 86.69 94.64

Improved % 0.67% 0.12% 2.5% 1.00% 0.2% -0.16%
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The results for OXBench-X were quite different. As
Table 9 shows, no tools can construct satisfactory align-
ments even for families with high similarity. This is not sur-
prising because the families in OXBench-X are much larger.
Even though MLProbs can still obtain better TC scores, its
improvement is not as significant as we saw in the other
benchmarks. One reason might be that BENCH, the dataset
that we use to train MLProbs, has an average family size
34.79, which is much smaller than that of OXBench-X
(whose average family size is 122.49).

Finally, for each of the four benchmark databases, we
compared the average running time of MLProbs and other
MSA tools for constructing an alignment. All the tools
were run on a Dell desktop computer with four i5-6500
(3.20GHz) Intel cores and 7.6GB main memory. Table 10
shows the results.

Note that the running time of MLProbs comprises three
main parts: (1) the time to get an alignment using
PnpProbs, (2) the time to realign some regions using
QuickProbs, and (3) the running times of the classifiers.
The total running time of the classifiers is negligible (cor-
roborated by the column for BAliBASE in Table 10, which
shows that the running time of MLProbs roughly equals
the sum of those of PnpProbs and QuickProbs). The

difference between the running time of MLProbs and the
sum of that of PnpProbs and QuickProbs is positive for
OXBench and SABMark, but is negative for OXBench-X.
This is because for families in OXBench and SABMark, we
usually need to realign only a few small regions, while for
those in OXBench-X, we need to realign many large
regions. This is not surprising because the size of the fami-
lies in OXBench-X is very large, so those constructed by
PnpProbs are not very reliable.

TABLE 8
TC-Scores and SP-Scores for OXBench

All 0 - 30% 30% - 100%

TC-score SP-score TC-score SP-score TC-score SP-score

MLProbs 82.67 90.55 45.13 66.56 89.86 95.13
QuickProbs 81.77 90.17 41.50 64.50 88.35 94.46
PnpProbs 82.06 90.19 43.96 66.33 89.54 95.01
GLProbs 81.93 90.13 43.34 66.11 89.55 94.99
MSAProbs 81.50 89.83 42.81 65.22 89.08 94.78
ProbCons 80.68 89.45 41.50 64.50 88.35 94.46
PicXAA 81.14 89.61 39.78 63.16 89.32 94.93
MAFFT 78.15 88.07 35.93 60.68 86.40 93.53
Muscle 80.67 89.50 40.95 63.96 88.21 94.34
ClustalV 79.99 88.91 37.39 60.78 88.08 94.25
ProbAlign 81.68 89.97 41.06 63.80 89.39 94.93

Improved % 0.72% 0.38% 2.66% 0.18% 0.35% 0.12%

TABLE 9
TC-Scores and SP-Scores on OXBench-X

All 0 - 30% 30% - 100%

TC-score SP-score TC-score SP-score TC-score SP-score

MLProbs 59.60 66.08 40.95 50.87 68.55 73.36
QuickProbs 59.44 65.86 40.72 50.74 68.41 73.11
PnpProbs 59.54 65.95 40.97 50.56 68.44 73.32
GLProbs 59.34 65.81 41.00 50.53 68.14 73.14
MSAProbs 59.37 65.82 40.60 50.39 68.37 73.22
ProbCons 58.93 65.62 39.41 49.43 68.29 73.39
PicXAA 58.85 65.39 39.00 49.19 68.37 73.15
MAFFT 56.90 64.20 37.22 47.25 66.33 72.32
Muscle 56.83 64.39 36.32 47.70 66.66 72.40
ClustalV 58.05 64.81 39.10 48.67 67.14 72.55
ProbAlign 59.27 65.71 39.80 49.65 68.60 73.41

Improved % 0.10% 0.20% - 0.26% 0.16% -

TABLE 10
Average Running Time (in Seconds) for Constructing an MSA

BAliBASE OXBench OXBench-X SABMark

MLProbs 16.7325 0.8689 43.4129 0.8171
QuickProbs 5.8985 0.1053 15.9758 0.0604
PnpProbs 11.2323 0.3065 31.7131 0.2106
GLProbs 12.0890 0.2808 32.1543 0.1492
MSAProbs 8.6230 0.1404 30.7912 0.0738
ProbCons 27.2583 0.4576 96.3181 0.2263
PicXAA 23.5338 0.4050 106.6262 0.2973
MAFFT 0.3191 0.1226 0.2345 0.1056
Muscle 1.5939 0.0339 2.7322 0.0715
ClustalV 1.1442 0.0313 0.8776 0.0466
ProbAlign 16.1930 0.2618 73.7960 0.1112
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4.2 Applications

4.2.1 Phylogenetic Tree Construction Analysis

A popular way to construct a phylogenetic tree for a protein
family is first to construct an MSA for the family, and then to
convert it to a phylogenetic tree. As remarked in [43], the qual-
ity of the constructed phylogenies depends to a large extent
on the accuracy of the MSAs. Since our experiments show
that MLProbs has the best alignment accuracy of all the tools,
we expect the phylogenetic trees constructed from its align-
ments to be good. To verify this, we compared the quality of
the phylogenetic trees constructed from the MSAs obtained
by MLProbs, QuickProbs, PnpProbs, GLProbs, MSAProbs,
ProbCons and PicXAA for families in TreeFam [44]. The phy-
logenetic treeswere constructed as follows:

For each tool U and each family F , we construct an MSA
M for F using U. Then, we use the phylogenetic tree con-
struction tool MEGA X [45] to construct a phylogenetic
tree fromM.

We measured the quality of a phylogenetic tree by its
unweighted Robinson-Foulds (RF) distance [46] between the
tree and the reference tree given in TreeFam; the smaller the
distance the better the tree. We used the package DendroPy
[47] to compute the distances. Table 11 summarizes our
results. Note that for all families, the phylogenetic trees con-
structed byMLProbs alignments had the smallest unweighted
RF distance.

4.2.2 Protein Secondary Structure Prediction

Another common application of MSA construction is to pre-
dict the secondary structure of proteins [48], and again the
quality of the MSAs affects the accuracy of the predictions.
We usedMLProbs and otherMSA tools to predict the second-
ary structure of the following protein sequences: 1U24 [49],
6HN6 [50], 5TFD [51], 5DFD [52], 2GDF, 3GDF [53] and
9GAF [54] as follows:

Given a protein sequence s, we use Jpred 4 [55] to search
protein sequences similar to this sequence. Then, we con-
struct an MSA M for these sequences and s, and then
use the secondary structure prediction tool provided on
Jpred 4 to predict the secondary structure of s.

Table 12 shows the number of wrongly aligned residues
made by the various tools. In all cases, MLProbs has the
smallest number of wrongly aligned residues.

5 CONCLUSION

This paper explored using the data-centric approach to
improve the accuracy of MSA construction. We identified
two classification problems that may help improve align-
ment construction and used the shallow machine learning
algorithm Random Forest to train models for them. Then
we build a pipeline for MLProbs that make use of these
models to help construct MSAs. An empirical evaluation
showed that MLProbs’ alignment accuracy was significantly
better than that of many popular MSA tools.

An interesting question is whether we can make further
improvements if we use deep-learning algorithms for the
training. We propose some research directions in the
following.

Convolutional neural networks (CNNs) [56], which have
achieved great success in computer vision, are very suitable
for training models like PAln

U;V for MSA construction. We note
that an MSA is very similar to a 2D picture; both have hier-
archical structures (e.g., an MSA has conserved columns,
which form conserved regions, while a picture has points,
which form lines, which in turn form boxes), and determin-
ing whether an MSA should be aligned by U or V is similar
to recognizing whether a picture is a dog or a cat, for exam-
ple. One major difficulty is that the input of our MSA prob-
lem is a protein family, not an MSA. One possible solution
is that we first use some quick MSA tools to construct an

TABLE 11
The Unweighted RF-Distances for the Phylogenetic Trees Constructed

TreeFam ID(Num. of Seq.) MLProbs QuickProbs PnpProbs GLProbs MSAProbs ProbCons PicXAA

TF105063(133) 126 130 132 132 134 140 130
TF105073(99) 112 112 112 112 114 116 124
TF105311(70) 92 92 94 94 94 92 102
TF105313(67) 18 22 18 18 22 22 18
TF105629(115) 106 112 110 110 108 114 120
TF105801(102) 140 140 140 140 144 150 148
TF313227(192) 212 212 228 228 230 224 220

TABLE 12
Number of Wrongly Aligned Residues in the Predicted Secondary Structures

PDB ID(Length) MLProbs QuickProbs PnpProbs GLProbs MSAProbs ProbCons MAFFT

1U24(337) 1 1 1 2 2 4 5
5TFD(229) 6 6 6 6 7 6 7
6HN6(282) 11 12 23 22 19 13 24
5DFD(114) 2 2 2 6 7 4 2
2GDF(237) 50 50 52 52 50 60 53
3GDF(267) 4 5 6 6 5 7 8
9GAF(295) 10 12 10 14 13 14 13
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imperfect MSA, and then use CNN to classify this imperfect
MSA. CNN is known to be very good at recognizing imper-
fect pictures, allowing titling, tolerating translation and
other distortions and noises, and it performs well at recog-
nizing imperfect MSAs.

Instead of treating an MSA as a computer vision prob-
lem, we may treat it as a natural language processing (NLP)
problem and apply advanced tools like LSTM and BERT
[57] to help train the models. For example, given a protein
family, we can determine whether we should use U or V to
align it as follows: for each pair of sequences in the family,
we construct the optimal alignment of the pair, and then
determine to which class it belongs. Then we pick the class
to which the majority of the pairs of sequences belong as the
class of the family. The problem of determining to which
class a pairwise alignment belongs can be treated as an NLP
sentiment-analysis problem; each column of the alignment
is regarded as a word, the words comprise a sentence, and
we need to determine the “emotion” (i.e., U or V) expressed
by the sentence.
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